用于高分辨率显微图像复原的去噪扩散模型

Pamela Osuna-Vargas, Maren H. Wehrheim, Lucas Zinz, Johanna Rahm, Ashwin Balakrishnan, Alexandra Kaminer, Mike Heilemann, Matthias Kaschube
{"title":"用于高分辨率显微图像复原的去噪扩散模型","authors":"Pamela Osuna-Vargas, Maren H. Wehrheim, Lucas Zinz, Johanna Rahm, Ashwin Balakrishnan, Alexandra Kaminer, Mike Heilemann, Matthias Kaschube","doi":"arxiv-2409.12078","DOIUrl":null,"url":null,"abstract":"Advances in microscopy imaging enable researchers to visualize structures at\nthe nanoscale level thereby unraveling intricate details of biological\norganization. However, challenges such as image noise, photobleaching of\nfluorophores, and low tolerability of biological samples to high light doses\nremain, restricting temporal resolutions and experiment durations. Reduced\nlaser doses enable longer measurements at the cost of lower resolution and\nincreased noise, which hinders accurate downstream analyses. Here we train a\ndenoising diffusion probabilistic model (DDPM) to predict high-resolution\nimages by conditioning the model on low-resolution information. Additionally,\nthe probabilistic aspect of the DDPM allows for repeated generation of images\nthat tend to further increase the signal-to-noise ratio. We show that our model\nachieves a performance that is better or similar to the previously\nbest-performing methods, across four highly diverse datasets. Importantly,\nwhile any of the previous methods show competitive performance for some, but\nnot all datasets, our method consistently achieves high performance across all\nfour data sets, suggesting high generalizability.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising diffusion models for high-resolution microscopy image restoration\",\"authors\":\"Pamela Osuna-Vargas, Maren H. Wehrheim, Lucas Zinz, Johanna Rahm, Ashwin Balakrishnan, Alexandra Kaminer, Mike Heilemann, Matthias Kaschube\",\"doi\":\"arxiv-2409.12078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in microscopy imaging enable researchers to visualize structures at\\nthe nanoscale level thereby unraveling intricate details of biological\\norganization. However, challenges such as image noise, photobleaching of\\nfluorophores, and low tolerability of biological samples to high light doses\\nremain, restricting temporal resolutions and experiment durations. Reduced\\nlaser doses enable longer measurements at the cost of lower resolution and\\nincreased noise, which hinders accurate downstream analyses. Here we train a\\ndenoising diffusion probabilistic model (DDPM) to predict high-resolution\\nimages by conditioning the model on low-resolution information. Additionally,\\nthe probabilistic aspect of the DDPM allows for repeated generation of images\\nthat tend to further increase the signal-to-noise ratio. We show that our model\\nachieves a performance that is better or similar to the previously\\nbest-performing methods, across four highly diverse datasets. Importantly,\\nwhile any of the previous methods show competitive performance for some, but\\nnot all datasets, our method consistently achieves high performance across all\\nfour data sets, suggesting high generalizability.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显微成像技术的进步使研究人员能够在纳米级水平上观察结构,从而揭示生物组织的复杂细节。然而,图像噪声、荧光团的光漂白、生物样本对高光剂量的耐受性低等挑战依然存在,限制了时间分辨率和实验持续时间。降低激光剂量可以延长测量时间,但代价是降低分辨率和增加噪声,从而阻碍了下游分析的准确性。在这里,我们通过在低分辨率信息的基础上训练腺扩散概率模型(DDPM)来预测高分辨率图像。此外,DDPM 的概率方面允许重复生成图像,从而进一步提高信噪比。我们的研究表明,在四个高度多样化的数据集上,我们的模型取得了优于或类似于之前表现最好的方法的性能。重要的是,虽然之前的任何方法都能在某些数据集(而非所有数据集)上显示出具有竞争力的性能,但我们的方法却能在所有四个数据集上持续获得高性能,这表明我们的方法具有很高的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Denoising diffusion models for high-resolution microscopy image restoration
Advances in microscopy imaging enable researchers to visualize structures at the nanoscale level thereby unraveling intricate details of biological organization. However, challenges such as image noise, photobleaching of fluorophores, and low tolerability of biological samples to high light doses remain, restricting temporal resolutions and experiment durations. Reduced laser doses enable longer measurements at the cost of lower resolution and increased noise, which hinders accurate downstream analyses. Here we train a denoising diffusion probabilistic model (DDPM) to predict high-resolution images by conditioning the model on low-resolution information. Additionally, the probabilistic aspect of the DDPM allows for repeated generation of images that tend to further increase the signal-to-noise ratio. We show that our model achieves a performance that is better or similar to the previously best-performing methods, across four highly diverse datasets. Importantly, while any of the previous methods show competitive performance for some, but not all datasets, our method consistently achieves high performance across all four data sets, suggesting high generalizability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信