量子数据编码作为量子电路设计中的一个独特抽象层

Gabriele Agliardi, Enrico Prati
{"title":"量子数据编码作为量子电路设计中的一个独特抽象层","authors":"Gabriele Agliardi, Enrico Prati","doi":"arxiv-2409.09339","DOIUrl":null,"url":null,"abstract":"Complex quantum circuits are constituted by combinations of quantum\nsubroutines. The computation is possible as long as the quantum data encoding\nis consistent throughout the circuit. Despite its fundamental importance, the\nformalization of quantum data encoding has never been addressed systematically\nso far. We formalize the concept of quantum data encoding, namely the format\nproviding a representation of a data set through a quantum state, as a distinct\nabstract layer with respect to the associated data loading circuit. We survey\nexisting encoding methods and their respective strategies for\nclassical-to-quantum exact and approximate data loading, for the\nquantum-to-classical extraction of information from states, and for\nquantum-to-quantum encoding conversion. Next, we show how major quantum\nalgorithms find a natural interpretation in terms of data loading. For\ninstance, the Quantum Fourier Transform is described as a quantum encoding\nconverter, while the Quantum Amplitude Estimation as an extraction routine. The\nnew conceptual framework is exemplified by considering its application to\nquantum-based Monte Carlo simulations, thus showcasing the power of the\nproposed formalism for the description of complex quantum circuits. Indeed, the\napproach clarifies the structure of complex quantum circuits and enables their\nefficient design.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum data encoding as a distinct abstraction layer in the design of quantum circuits\",\"authors\":\"Gabriele Agliardi, Enrico Prati\",\"doi\":\"arxiv-2409.09339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex quantum circuits are constituted by combinations of quantum\\nsubroutines. The computation is possible as long as the quantum data encoding\\nis consistent throughout the circuit. Despite its fundamental importance, the\\nformalization of quantum data encoding has never been addressed systematically\\nso far. We formalize the concept of quantum data encoding, namely the format\\nproviding a representation of a data set through a quantum state, as a distinct\\nabstract layer with respect to the associated data loading circuit. We survey\\nexisting encoding methods and their respective strategies for\\nclassical-to-quantum exact and approximate data loading, for the\\nquantum-to-classical extraction of information from states, and for\\nquantum-to-quantum encoding conversion. Next, we show how major quantum\\nalgorithms find a natural interpretation in terms of data loading. For\\ninstance, the Quantum Fourier Transform is described as a quantum encoding\\nconverter, while the Quantum Amplitude Estimation as an extraction routine. The\\nnew conceptual framework is exemplified by considering its application to\\nquantum-based Monte Carlo simulations, thus showcasing the power of the\\nproposed formalism for the description of complex quantum circuits. Indeed, the\\napproach clarifies the structure of complex quantum circuits and enables their\\nefficient design.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复杂的量子电路由量子子程序组合而成。只要量子数据编码在整个电路中保持一致,计算就有可能实现。尽管量子数据编码的形式化具有根本性的重要意义,但迄今为止从未有人系统地解决过这一问题。我们将量子数据编码的概念形式化,即通过量子态提供数据集表示的格式,作为相关数据加载电路的一个独特抽象层。我们研究了现有的编码方法及其各自的策略,包括从经典到量子的精确和近似数据加载、从量子到经典的状态信息提取,以及从量子到量子的编码转换。接下来,我们将展示主要量子算法如何在数据加载方面找到自然解释。例如,量子傅里叶变换被描述为一种量子编码转换器,而量子振幅估计则是一种提取程序。通过将新概念框架应用于基于量子的蒙特卡罗模拟,展示了所提出的形式主义在描述复杂量子电路方面的威力。事实上,该方法阐明了复杂量子电路的结构,并实现了高效设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum data encoding as a distinct abstraction layer in the design of quantum circuits
Complex quantum circuits are constituted by combinations of quantum subroutines. The computation is possible as long as the quantum data encoding is consistent throughout the circuit. Despite its fundamental importance, the formalization of quantum data encoding has never been addressed systematically so far. We formalize the concept of quantum data encoding, namely the format providing a representation of a data set through a quantum state, as a distinct abstract layer with respect to the associated data loading circuit. We survey existing encoding methods and their respective strategies for classical-to-quantum exact and approximate data loading, for the quantum-to-classical extraction of information from states, and for quantum-to-quantum encoding conversion. Next, we show how major quantum algorithms find a natural interpretation in terms of data loading. For instance, the Quantum Fourier Transform is described as a quantum encoding converter, while the Quantum Amplitude Estimation as an extraction routine. The new conceptual framework is exemplified by considering its application to quantum-based Monte Carlo simulations, thus showcasing the power of the proposed formalism for the description of complex quantum circuits. Indeed, the approach clarifies the structure of complex quantum circuits and enables their efficient design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信