Zhi-Hua Xue, Ruixuan Xu, Jianheng Qin, Zikangping Wang, Yu Liu and Qi-Long Yan
{"title":"通过嵌入不敏感的纳米级高能晶体对球形 CL-20 复合材料进行脱敏处理","authors":"Zhi-Hua Xue, Ruixuan Xu, Jianheng Qin, Zikangping Wang, Yu Liu and Qi-Long Yan","doi":"10.1039/D4CE00833B","DOIUrl":null,"url":null,"abstract":"<p >The development of spherical CL-20-based co-particles, which incorporate nanosized nLLM-105@PDA and nFOX-7@PDA crystals at different ratios (1%, 5%, and 10%), has been achieved using a spray drying technique. This innovative approach results in solid spherical co-particles where the nanosized inclusions are tightly integrated in CL-20 based composite crystals, where the outer shell is primarily composed of CL-20. Scanning electron microscopy (SEM) confirms the structural integrity of these co-particles, and nano-computed tomography further elucidates the intricate interfacial structure. Differential scanning calorimetry (DSC) and thermogravimetric (TG) analyses reveal that these co-particles undergo a single-step decomposition process, akin to their energetic co-crystals. This behavior is indicative of a unified and predictable thermal response. Molecular dynamics (MD) simulations, employing a reactive forcefield, have been conducted to track their thermal decomposition products. Although the CL-20 polymorph in both co-LLM-105<small><sub>P</sub></small>/CL-20 and co-LLM-105<small><sub>P</sub></small>/CL-20 co-particles is in the β-phase, their impact initiation energy is approximately 4 to 6 times higher than that of raw ε-CL-20. Moreover, the co-particle formulation does not adversely affect the velocity of detonation (VoD) and detonation pressure (<em>P</em><small><sub>C–J</sub></small>), showing that the energy density is preserved.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 39","pages":" 5617-5631"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desensitization of spherical CL-20 composites by embedding insensitive nanosized energetic crystals†\",\"authors\":\"Zhi-Hua Xue, Ruixuan Xu, Jianheng Qin, Zikangping Wang, Yu Liu and Qi-Long Yan\",\"doi\":\"10.1039/D4CE00833B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of spherical CL-20-based co-particles, which incorporate nanosized nLLM-105@PDA and nFOX-7@PDA crystals at different ratios (1%, 5%, and 10%), has been achieved using a spray drying technique. This innovative approach results in solid spherical co-particles where the nanosized inclusions are tightly integrated in CL-20 based composite crystals, where the outer shell is primarily composed of CL-20. Scanning electron microscopy (SEM) confirms the structural integrity of these co-particles, and nano-computed tomography further elucidates the intricate interfacial structure. Differential scanning calorimetry (DSC) and thermogravimetric (TG) analyses reveal that these co-particles undergo a single-step decomposition process, akin to their energetic co-crystals. This behavior is indicative of a unified and predictable thermal response. Molecular dynamics (MD) simulations, employing a reactive forcefield, have been conducted to track their thermal decomposition products. Although the CL-20 polymorph in both co-LLM-105<small><sub>P</sub></small>/CL-20 and co-LLM-105<small><sub>P</sub></small>/CL-20 co-particles is in the β-phase, their impact initiation energy is approximately 4 to 6 times higher than that of raw ε-CL-20. Moreover, the co-particle formulation does not adversely affect the velocity of detonation (VoD) and detonation pressure (<em>P</em><small><sub>C–J</sub></small>), showing that the energy density is preserved.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 39\",\"pages\":\" 5617-5631\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00833b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00833b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Desensitization of spherical CL-20 composites by embedding insensitive nanosized energetic crystals†
The development of spherical CL-20-based co-particles, which incorporate nanosized nLLM-105@PDA and nFOX-7@PDA crystals at different ratios (1%, 5%, and 10%), has been achieved using a spray drying technique. This innovative approach results in solid spherical co-particles where the nanosized inclusions are tightly integrated in CL-20 based composite crystals, where the outer shell is primarily composed of CL-20. Scanning electron microscopy (SEM) confirms the structural integrity of these co-particles, and nano-computed tomography further elucidates the intricate interfacial structure. Differential scanning calorimetry (DSC) and thermogravimetric (TG) analyses reveal that these co-particles undergo a single-step decomposition process, akin to their energetic co-crystals. This behavior is indicative of a unified and predictable thermal response. Molecular dynamics (MD) simulations, employing a reactive forcefield, have been conducted to track their thermal decomposition products. Although the CL-20 polymorph in both co-LLM-105P/CL-20 and co-LLM-105P/CL-20 co-particles is in the β-phase, their impact initiation energy is approximately 4 to 6 times higher than that of raw ε-CL-20. Moreover, the co-particle formulation does not adversely affect the velocity of detonation (VoD) and detonation pressure (PC–J), showing that the energy density is preserved.