芒果带分组算子的离散图像变换漫场

Brighton Ancelin, Yenho Chen, Peimeng Guan, Chiraag Kaushik, Belen Martin-Urcelay, Alex Saad-Falcon, Nakul Singh
{"title":"芒果带分组算子的离散图像变换漫场","authors":"Brighton Ancelin, Yenho Chen, Peimeng Guan, Chiraag Kaushik, Belen Martin-Urcelay, Alex Saad-Falcon, Nakul Singh","doi":"arxiv-2409.09542","DOIUrl":null,"url":null,"abstract":"Learning semantically meaningful image transformations (i.e. rotation,\nthickness, blur) directly from examples can be a challenging task. Recently,\nthe Manifold Autoencoder (MAE) proposed using a set of Lie group operators to\nlearn image transformations directly from examples. However, this approach has\nlimitations, as the learned operators are not guaranteed to be disentangled and\nthe training routine is prohibitively expensive when scaling up the model. To\naddress these limitations, we propose MANGO (transformation Manifolds with\nGrouped Operators) for learning disentangled operators that describe image\ntransformations in distinct latent subspaces. Moreover, our approach allows\npractitioners the ability to define which transformations they aim to model,\nthus improving the semantic meaning of the learned operators. Through our\nexperiments, we demonstrate that MANGO enables composition of image\ntransformations and introduces a one-phase training routine that leads to a\n100x speedup over prior works.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MANGO: Disentangled Image Transformation Manifolds with Grouped Operators\",\"authors\":\"Brighton Ancelin, Yenho Chen, Peimeng Guan, Chiraag Kaushik, Belen Martin-Urcelay, Alex Saad-Falcon, Nakul Singh\",\"doi\":\"arxiv-2409.09542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning semantically meaningful image transformations (i.e. rotation,\\nthickness, blur) directly from examples can be a challenging task. Recently,\\nthe Manifold Autoencoder (MAE) proposed using a set of Lie group operators to\\nlearn image transformations directly from examples. However, this approach has\\nlimitations, as the learned operators are not guaranteed to be disentangled and\\nthe training routine is prohibitively expensive when scaling up the model. To\\naddress these limitations, we propose MANGO (transformation Manifolds with\\nGrouped Operators) for learning disentangled operators that describe image\\ntransformations in distinct latent subspaces. Moreover, our approach allows\\npractitioners the ability to define which transformations they aim to model,\\nthus improving the semantic meaning of the learned operators. Through our\\nexperiments, we demonstrate that MANGO enables composition of image\\ntransformations and introduces a one-phase training routine that leads to a\\n100x speedup over prior works.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直接从示例中学习有语义意义的图像变换(如旋转、厚度、模糊)是一项具有挑战性的任务。最近,Manifold Autoencoder(MAE)提出使用一组列群算子直接从示例中学习图像变换。然而,这种方法也有局限性,因为学习到的算子不能保证被分解,而且在扩大模型规模时,训练程序的成本过高。为了解决这些局限性,我们提出了 MANGO(具有分组算子的变换 Manifolds)方法,用于学习在不同潜在子空间中描述图像变换的分离算子。此外,我们的方法允许练习者定义他们要模拟的变换,从而提高了所学算子的语义。通过我们的实验,我们证明了 MANGO 能够实现图像变换的组合,并引入了一个阶段的训练程序,与之前的工作相比,速度提高了 100 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MANGO: Disentangled Image Transformation Manifolds with Grouped Operators
Learning semantically meaningful image transformations (i.e. rotation, thickness, blur) directly from examples can be a challenging task. Recently, the Manifold Autoencoder (MAE) proposed using a set of Lie group operators to learn image transformations directly from examples. However, this approach has limitations, as the learned operators are not guaranteed to be disentangled and the training routine is prohibitively expensive when scaling up the model. To address these limitations, we propose MANGO (transformation Manifolds with Grouped Operators) for learning disentangled operators that describe image transformations in distinct latent subspaces. Moreover, our approach allows practitioners the ability to define which transformations they aim to model, thus improving the semantic meaning of the learned operators. Through our experiments, we demonstrate that MANGO enables composition of image transformations and introduces a one-phase training routine that leads to a 100x speedup over prior works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信