学习用于磁共振图像超分辨率的双因子表示法

Weifeng Wei, Heng Chen, Pengxiang Su
{"title":"学习用于磁共振图像超分辨率的双因子表示法","authors":"Weifeng Wei, Heng Chen, Pengxiang Su","doi":"arxiv-2409.09731","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Imaging (MRI) requires a trade-off between resolution,\nsignal-to-noise ratio, and scan time, making high-resolution (HR) acquisition\nchallenging. Therefore, super-resolution for MR image is a feasible solution.\nHowever, most existing methods face challenges in accurately learning a\ncontinuous volumetric representation from low-resolution image or require HR\nimage for supervision. To solve these challenges, we propose a novel method for\nMR image super-resolution based on two-factor representation. Specifically, we\nfactorize intensity signals into a linear combination of learnable basis and\ncoefficient factors, enabling efficient continuous volumetric representation\nfrom low-resolution MR image. Besides, we introduce a coordinate-based encoding\nto capture structural relationships between sparse voxels, facilitating smooth\ncompletion in unobserved regions. Experiments on BraTS 2019 and MSSEG 2016\ndatasets demonstrate that our method achieves state-of-the-art performance,\nproviding superior visual fidelity and robustness, particularly in large\nup-sampling scale MR image super-resolution.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Two-factor Representation for Magnetic Resonance Image Super-resolution\",\"authors\":\"Weifeng Wei, Heng Chen, Pengxiang Su\",\"doi\":\"arxiv-2409.09731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic Resonance Imaging (MRI) requires a trade-off between resolution,\\nsignal-to-noise ratio, and scan time, making high-resolution (HR) acquisition\\nchallenging. Therefore, super-resolution for MR image is a feasible solution.\\nHowever, most existing methods face challenges in accurately learning a\\ncontinuous volumetric representation from low-resolution image or require HR\\nimage for supervision. To solve these challenges, we propose a novel method for\\nMR image super-resolution based on two-factor representation. Specifically, we\\nfactorize intensity signals into a linear combination of learnable basis and\\ncoefficient factors, enabling efficient continuous volumetric representation\\nfrom low-resolution MR image. Besides, we introduce a coordinate-based encoding\\nto capture structural relationships between sparse voxels, facilitating smooth\\ncompletion in unobserved regions. Experiments on BraTS 2019 and MSSEG 2016\\ndatasets demonstrate that our method achieves state-of-the-art performance,\\nproviding superior visual fidelity and robustness, particularly in large\\nup-sampling scale MR image super-resolution.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁共振成像(MRI)需要在分辨率、信噪比和扫描时间之间进行权衡,因此高分辨率(HR)采集具有挑战性。然而,大多数现有方法在从低分辨率图像准确学习连续容积表示方面面临挑战,或者需要高分辨率图像进行监督。为了解决这些难题,我们提出了一种基于双因子表示的 MR 图像超分辨率新方法。具体来说,我们将强度信号因子化为可学习的基础因子和系数因子的线性组合,从而从低分辨率磁共振图像中获得高效的连续容积表示。此外,我们还引入了基于坐标的编码,以捕捉稀疏体素之间的结构关系,从而促进未观察区域的顺利完成。在 BraTS 2019 和 MSSEG 2016 数据集上进行的实验表明,我们的方法达到了最先进的性能,提供了卓越的视觉保真度和鲁棒性,尤其是在大采样规模的磁共振图像超分辨率中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Two-factor Representation for Magnetic Resonance Image Super-resolution
Magnetic Resonance Imaging (MRI) requires a trade-off between resolution, signal-to-noise ratio, and scan time, making high-resolution (HR) acquisition challenging. Therefore, super-resolution for MR image is a feasible solution. However, most existing methods face challenges in accurately learning a continuous volumetric representation from low-resolution image or require HR image for supervision. To solve these challenges, we propose a novel method for MR image super-resolution based on two-factor representation. Specifically, we factorize intensity signals into a linear combination of learnable basis and coefficient factors, enabling efficient continuous volumetric representation from low-resolution MR image. Besides, we introduce a coordinate-based encoding to capture structural relationships between sparse voxels, facilitating smooth completion in unobserved regions. Experiments on BraTS 2019 and MSSEG 2016 datasets demonstrate that our method achieves state-of-the-art performance, providing superior visual fidelity and robustness, particularly in large up-sampling scale MR image super-resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信