利用基于扩散的模型从 TOF-MRA 到 CTA 的跨模态图像合成

Alexander Koch, Orhun Utku Aydin, Adam Hilbert, Jana Rieger, Satoru Tanioka, Fujimaro Ishida, Dietmar Frey
{"title":"利用基于扩散的模型从 TOF-MRA 到 CTA 的跨模态图像合成","authors":"Alexander Koch, Orhun Utku Aydin, Adam Hilbert, Jana Rieger, Satoru Tanioka, Fujimaro Ishida, Dietmar Frey","doi":"arxiv-2409.10089","DOIUrl":null,"url":null,"abstract":"Cerebrovascular disease often requires multiple imaging modalities for\naccurate diagnosis, treatment, and monitoring. Computed Tomography Angiography\n(CTA) and Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) are two\ncommon non-invasive angiography techniques, each with distinct strengths in\naccessibility, safety, and diagnostic accuracy. While CTA is more widely used\nin acute stroke due to its faster acquisition times and higher diagnostic\naccuracy, TOF-MRA is preferred for its safety, as it avoids radiation exposure\nand contrast agent-related health risks. Despite the predominant role of CTA in\nclinical workflows, there is a scarcity of open-source CTA data, limiting the\nresearch and development of AI models for tasks such as large vessel occlusion\ndetection and aneurysm segmentation. This study explores diffusion-based\nimage-to-image translation models to generate synthetic CTA images from TOF-MRA\ninput. We demonstrate the modality conversion from TOF-MRA to CTA and show that\ndiffusion models outperform a traditional U-Net-based approach. Our work\ncompares different state-of-the-art diffusion architectures and samplers,\noffering recommendations for optimal model performance in this cross-modality\ntranslation task.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-modality image synthesis from TOF-MRA to CTA using diffusion-based models\",\"authors\":\"Alexander Koch, Orhun Utku Aydin, Adam Hilbert, Jana Rieger, Satoru Tanioka, Fujimaro Ishida, Dietmar Frey\",\"doi\":\"arxiv-2409.10089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cerebrovascular disease often requires multiple imaging modalities for\\naccurate diagnosis, treatment, and monitoring. Computed Tomography Angiography\\n(CTA) and Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) are two\\ncommon non-invasive angiography techniques, each with distinct strengths in\\naccessibility, safety, and diagnostic accuracy. While CTA is more widely used\\nin acute stroke due to its faster acquisition times and higher diagnostic\\naccuracy, TOF-MRA is preferred for its safety, as it avoids radiation exposure\\nand contrast agent-related health risks. Despite the predominant role of CTA in\\nclinical workflows, there is a scarcity of open-source CTA data, limiting the\\nresearch and development of AI models for tasks such as large vessel occlusion\\ndetection and aneurysm segmentation. This study explores diffusion-based\\nimage-to-image translation models to generate synthetic CTA images from TOF-MRA\\ninput. We demonstrate the modality conversion from TOF-MRA to CTA and show that\\ndiffusion models outperform a traditional U-Net-based approach. Our work\\ncompares different state-of-the-art diffusion architectures and samplers,\\noffering recommendations for optimal model performance in this cross-modality\\ntranslation task.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑血管疾病通常需要多种成像方式进行准确诊断、治疗和监测。计算机断层扫描血管造影(CTA)和飞行时间磁共振血管造影(TOF-MRA)是两种常见的无创血管造影技术,在可及性、安全性和诊断准确性方面各有所长。CTA 因其更快的采集时间和更高的诊断准确性而在急性卒中中得到更广泛的应用,而 TOF-MRA 则因其安全性而受到青睐,因为它避免了辐射暴露和造影剂相关的健康风险。尽管 CTA 在临床工作流程中发挥着主导作用,但开源 CTA 数据稀缺,限制了针对大血管闭塞检测和动脉瘤分割等任务的人工智能模型的研究和开发。本研究探索了基于扩散的图像到图像转换模型,以从 TOF-MRA 输入生成合成 CTA 图像。我们演示了从 TOF-MRA 到 CTA 的模式转换,并表明扩散模型优于传统的基于 U-Net 的方法。我们的研究比较了不同的最先进的扩散架构和采样器,为这种跨模态转换任务中的最佳模型性能提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-modality image synthesis from TOF-MRA to CTA using diffusion-based models
Cerebrovascular disease often requires multiple imaging modalities for accurate diagnosis, treatment, and monitoring. Computed Tomography Angiography (CTA) and Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) are two common non-invasive angiography techniques, each with distinct strengths in accessibility, safety, and diagnostic accuracy. While CTA is more widely used in acute stroke due to its faster acquisition times and higher diagnostic accuracy, TOF-MRA is preferred for its safety, as it avoids radiation exposure and contrast agent-related health risks. Despite the predominant role of CTA in clinical workflows, there is a scarcity of open-source CTA data, limiting the research and development of AI models for tasks such as large vessel occlusion detection and aneurysm segmentation. This study explores diffusion-based image-to-image translation models to generate synthetic CTA images from TOF-MRA input. We demonstrate the modality conversion from TOF-MRA to CTA and show that diffusion models outperform a traditional U-Net-based approach. Our work compares different state-of-the-art diffusion architectures and samplers, offering recommendations for optimal model performance in this cross-modality translation task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信