通过禁止单一模式获得的有限类型转变

Nishant Chandgotia, Brian Marcus, Jacob Richey, Chengyu Wu
{"title":"通过禁止单一模式获得的有限类型转变","authors":"Nishant Chandgotia, Brian Marcus, Jacob Richey, Chengyu Wu","doi":"arxiv-2409.09024","DOIUrl":null,"url":null,"abstract":"Given a finite word $w$, Guibas and Odlyzko (J. Combin. Theory Ser. A, 30,\n1981, 183-208) showed that the autocorrelation polynomial $\\phi_w(t)$ of $w$,\nwhich records the set of self-overlaps of $w$, explicitly determines for each\n$n$, the number $|B_n(w)|$ of words of length $n$ that avoid $w$. We consider\nthis and related problems from the viewpoint of symbolic dynamics, focusing on\nthe setting of $X_{\\{w\\}}$, the space of all bi-infinite sequences that avoid\n$w$. We first summarize and elaborate upon (J. Combin. Theory Ser. A, 30, 1981,\n183-208) and other work to show that the sequence $|B_n(w)|$ is equivalent to\nseveral invariants of $X_{\\{w\\}}$. We then give a finite-state labeled\ngraphical representation $L_w$ of $X_{\\{w\\}}$ and show that $w$ can be\nrecovered from the graph isomorphism class of the unlabeled version of $L_w$.\nUsing $L_w$, we apply ideas from probability and Perron-Frobenius theory to\nobtain results comparing features of $X_{\\{w\\}}$ for different $w$. Next, we\ngive partial results on the problem of classifying the spaces $X_{\\{w\\}}$ up to\nconjugacy. Finally, we extend some of our results to spaces of\nmulti-dimensional arrays that avoid a given finite pattern.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifts of Finite Type Obtained by Forbidding a Single Pattern\",\"authors\":\"Nishant Chandgotia, Brian Marcus, Jacob Richey, Chengyu Wu\",\"doi\":\"arxiv-2409.09024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a finite word $w$, Guibas and Odlyzko (J. Combin. Theory Ser. A, 30,\\n1981, 183-208) showed that the autocorrelation polynomial $\\\\phi_w(t)$ of $w$,\\nwhich records the set of self-overlaps of $w$, explicitly determines for each\\n$n$, the number $|B_n(w)|$ of words of length $n$ that avoid $w$. We consider\\nthis and related problems from the viewpoint of symbolic dynamics, focusing on\\nthe setting of $X_{\\\\{w\\\\}}$, the space of all bi-infinite sequences that avoid\\n$w$. We first summarize and elaborate upon (J. Combin. Theory Ser. A, 30, 1981,\\n183-208) and other work to show that the sequence $|B_n(w)|$ is equivalent to\\nseveral invariants of $X_{\\\\{w\\\\}}$. We then give a finite-state labeled\\ngraphical representation $L_w$ of $X_{\\\\{w\\\\}}$ and show that $w$ can be\\nrecovered from the graph isomorphism class of the unlabeled version of $L_w$.\\nUsing $L_w$, we apply ideas from probability and Perron-Frobenius theory to\\nobtain results comparing features of $X_{\\\\{w\\\\}}$ for different $w$. Next, we\\ngive partial results on the problem of classifying the spaces $X_{\\\\{w\\\\}}$ up to\\nconjugacy. Finally, we extend some of our results to spaces of\\nmulti-dimensional arrays that avoid a given finite pattern.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个有限词 $w$,Guibas 和 Odlyzko (J. Combin. Theory Ser. A, 30,1981, 183-208) 发现,记录了 $w$ 的自重叠集合的 $w$ 的自相关多项式 $\phi_w(t)$,明确地决定了每个 $n$ 的长度为 $n$ 的词中避开 $w$ 的词的数目 $|B_n(w)|$。我们从符号动力学的角度来考虑这个问题及相关问题,重点是 $X_{\{w\}}$,即所有避开 $w$ 的双无限序列的空间。我们首先总结并阐述了 (J. Combin. Theory Ser. A, 30, 1981,183-208)和其他工作,以证明序列 $|B_n(w)|$ 等价于 $X_{\{w\}}$ 的几个不变式。然后,我们给出了$X_{\{w\}}$的有限状态标注图表示$L_w$,并证明$w$可以从未标明版本的$L_w$的图同构类中得到。利用$L_w$,我们应用概率论和佩伦-弗罗贝尼斯理论的思想,得到了比较不同$w$下$X_{\{w\}}$特征的结果。接下来,我们给出了对直到共轭的空间 $X_{\{w\}$ 的分类问题的部分结果。最后,我们将部分结果扩展到避免给定有限模式的多维阵列空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shifts of Finite Type Obtained by Forbidding a Single Pattern
Given a finite word $w$, Guibas and Odlyzko (J. Combin. Theory Ser. A, 30, 1981, 183-208) showed that the autocorrelation polynomial $\phi_w(t)$ of $w$, which records the set of self-overlaps of $w$, explicitly determines for each $n$, the number $|B_n(w)|$ of words of length $n$ that avoid $w$. We consider this and related problems from the viewpoint of symbolic dynamics, focusing on the setting of $X_{\{w\}}$, the space of all bi-infinite sequences that avoid $w$. We first summarize and elaborate upon (J. Combin. Theory Ser. A, 30, 1981, 183-208) and other work to show that the sequence $|B_n(w)|$ is equivalent to several invariants of $X_{\{w\}}$. We then give a finite-state labeled graphical representation $L_w$ of $X_{\{w\}}$ and show that $w$ can be recovered from the graph isomorphism class of the unlabeled version of $L_w$. Using $L_w$, we apply ideas from probability and Perron-Frobenius theory to obtain results comparing features of $X_{\{w\}}$ for different $w$. Next, we give partial results on the problem of classifying the spaces $X_{\{w\}}$ up to conjugacy. Finally, we extend some of our results to spaces of multi-dimensional arrays that avoid a given finite pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信