利用蒸馏技术理解文档:FLAN-T5 案例研究

Marcel Lamott, Muhammad Armaghan Shakir
{"title":"利用蒸馏技术理解文档:FLAN-T5 案例研究","authors":"Marcel Lamott, Muhammad Armaghan Shakir","doi":"arxiv-2409.11282","DOIUrl":null,"url":null,"abstract":"The surge of digital documents in various formats, including less\nstandardized documents such as business reports and environmental assessments,\nunderscores the growing importance of Document Understanding. While Large\nLanguage Models (LLMs) have showcased prowess across diverse natural language\nprocessing tasks, their direct application to Document Understanding remains a\nchallenge. Previous research has demonstrated the utility of LLMs in this\ndomain, yet their significant computational demands make them challenging to\ndeploy effectively. Additionally, proprietary Blackbox LLMs often outperform\ntheir open-source counterparts, posing a barrier to widespread accessibility.\nIn this paper, we delve into the realm of document understanding, leveraging\ndistillation methods to harness the power of large LLMs while accommodating\ncomputational limitations. Specifically, we present a novel approach wherein we\ndistill document understanding knowledge from the proprietary LLM ChatGPT into\nFLAN-T5. Our methodology integrates labeling and curriculum-learning mechanisms\nto facilitate efficient knowledge transfer. This work contributes to the\nadvancement of document understanding methodologies by offering a scalable\nsolution that bridges the gap between resource-intensive LLMs and practical\napplications. Our findings underscore the potential of distillation techniques\nin facilitating the deployment of sophisticated language models in real-world\nscenarios, thereby fostering advancements in natural language processing and\ndocument comprehension domains.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Distillation Techniques for Document Understanding: A Case Study with FLAN-T5\",\"authors\":\"Marcel Lamott, Muhammad Armaghan Shakir\",\"doi\":\"arxiv-2409.11282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surge of digital documents in various formats, including less\\nstandardized documents such as business reports and environmental assessments,\\nunderscores the growing importance of Document Understanding. While Large\\nLanguage Models (LLMs) have showcased prowess across diverse natural language\\nprocessing tasks, their direct application to Document Understanding remains a\\nchallenge. Previous research has demonstrated the utility of LLMs in this\\ndomain, yet their significant computational demands make them challenging to\\ndeploy effectively. Additionally, proprietary Blackbox LLMs often outperform\\ntheir open-source counterparts, posing a barrier to widespread accessibility.\\nIn this paper, we delve into the realm of document understanding, leveraging\\ndistillation methods to harness the power of large LLMs while accommodating\\ncomputational limitations. Specifically, we present a novel approach wherein we\\ndistill document understanding knowledge from the proprietary LLM ChatGPT into\\nFLAN-T5. Our methodology integrates labeling and curriculum-learning mechanisms\\nto facilitate efficient knowledge transfer. This work contributes to the\\nadvancement of document understanding methodologies by offering a scalable\\nsolution that bridges the gap between resource-intensive LLMs and practical\\napplications. Our findings underscore the potential of distillation techniques\\nin facilitating the deployment of sophisticated language models in real-world\\nscenarios, thereby fostering advancements in natural language processing and\\ndocument comprehension domains.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各种格式的数字文档,包括商业报告和环境评估等标准化程度较低的文档的激增,凸显了文档理解的重要性与日俱增。虽然大型语言模型(LLMs)在各种自然语言处理任务中表现出了卓越的能力,但将其直接应用于文档理解仍然是一个挑战。以前的研究已经证明了 LLM 在这一领域的实用性,但其巨大的计算需求使其难以有效部署。在本文中,我们将深入探讨文档理解领域,利用蒸馏方法利用大型 LLM 的强大功能,同时兼顾计算限制。具体来说,我们提出了一种新方法,将专有 LLM ChatGPT 中的文档理解知识蒸馏到FLAN-T5 中。我们的方法整合了标签和课程学习机制,以促进高效的知识转移。这项工作提供了一种可扩展的解决方案,缩小了资源密集型 LLM 与实际应用之间的差距,从而推动了文档理解方法的发展。我们的研究结果强调了蒸馏技术在促进复杂语言模型在现实世界场景中的部署方面的潜力,从而促进了自然语言处理和文档理解领域的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Distillation Techniques for Document Understanding: A Case Study with FLAN-T5
The surge of digital documents in various formats, including less standardized documents such as business reports and environmental assessments, underscores the growing importance of Document Understanding. While Large Language Models (LLMs) have showcased prowess across diverse natural language processing tasks, their direct application to Document Understanding remains a challenge. Previous research has demonstrated the utility of LLMs in this domain, yet their significant computational demands make them challenging to deploy effectively. Additionally, proprietary Blackbox LLMs often outperform their open-source counterparts, posing a barrier to widespread accessibility. In this paper, we delve into the realm of document understanding, leveraging distillation methods to harness the power of large LLMs while accommodating computational limitations. Specifically, we present a novel approach wherein we distill document understanding knowledge from the proprietary LLM ChatGPT into FLAN-T5. Our methodology integrates labeling and curriculum-learning mechanisms to facilitate efficient knowledge transfer. This work contributes to the advancement of document understanding methodologies by offering a scalable solution that bridges the gap between resource-intensive LLMs and practical applications. Our findings underscore the potential of distillation techniques in facilitating the deployment of sophisticated language models in real-world scenarios, thereby fostering advancements in natural language processing and document comprehension domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信