THaMES:大型语言模型中减少和评估幻觉的端到端工具

Mengfei Liang, Archish Arun, Zekun Wu, Cristian Munoz, Jonathan Lutch, Emre Kazim, Adriano Koshiyama, Philip Treleaven
{"title":"THaMES:大型语言模型中减少和评估幻觉的端到端工具","authors":"Mengfei Liang, Archish Arun, Zekun Wu, Cristian Munoz, Jonathan Lutch, Emre Kazim, Adriano Koshiyama, Philip Treleaven","doi":"arxiv-2409.11353","DOIUrl":null,"url":null,"abstract":"Hallucination, the generation of factually incorrect content, is a growing\nchallenge in Large Language Models (LLMs). Existing detection and mitigation\nmethods are often isolated and insufficient for domain-specific needs, lacking\na standardized pipeline. This paper introduces THaMES (Tool for Hallucination\nMitigations and EvaluationS), an integrated framework and library addressing\nthis gap. THaMES offers an end-to-end solution for evaluating and mitigating\nhallucinations in LLMs, featuring automated test set generation, multifaceted\nbenchmarking, and adaptable mitigation strategies. It automates test set\ncreation from any corpus, ensuring high data quality, diversity, and\ncost-efficiency through techniques like batch processing, weighted sampling,\nand counterfactual validation. THaMES assesses a model's ability to detect and\nreduce hallucinations across various tasks, including text generation and\nbinary classification, applying optimal mitigation strategies like In-Context\nLearning (ICL), Retrieval Augmented Generation (RAG), and Parameter-Efficient\nFine-tuning (PEFT). Evaluations of state-of-the-art LLMs using a knowledge base\nof academic papers, political news, and Wikipedia reveal that commercial models\nlike GPT-4o benefit more from RAG than ICL, while open-weight models like\nLlama-3.1-8B-Instruct and Mistral-Nemo gain more from ICL. Additionally, PEFT\nsignificantly enhances the performance of Llama-3.1-8B-Instruct in both\nevaluation tasks.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models\",\"authors\":\"Mengfei Liang, Archish Arun, Zekun Wu, Cristian Munoz, Jonathan Lutch, Emre Kazim, Adriano Koshiyama, Philip Treleaven\",\"doi\":\"arxiv-2409.11353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hallucination, the generation of factually incorrect content, is a growing\\nchallenge in Large Language Models (LLMs). Existing detection and mitigation\\nmethods are often isolated and insufficient for domain-specific needs, lacking\\na standardized pipeline. This paper introduces THaMES (Tool for Hallucination\\nMitigations and EvaluationS), an integrated framework and library addressing\\nthis gap. THaMES offers an end-to-end solution for evaluating and mitigating\\nhallucinations in LLMs, featuring automated test set generation, multifaceted\\nbenchmarking, and adaptable mitigation strategies. It automates test set\\ncreation from any corpus, ensuring high data quality, diversity, and\\ncost-efficiency through techniques like batch processing, weighted sampling,\\nand counterfactual validation. THaMES assesses a model's ability to detect and\\nreduce hallucinations across various tasks, including text generation and\\nbinary classification, applying optimal mitigation strategies like In-Context\\nLearning (ICL), Retrieval Augmented Generation (RAG), and Parameter-Efficient\\nFine-tuning (PEFT). Evaluations of state-of-the-art LLMs using a knowledge base\\nof academic papers, political news, and Wikipedia reveal that commercial models\\nlike GPT-4o benefit more from RAG than ICL, while open-weight models like\\nLlama-3.1-8B-Instruct and Mistral-Nemo gain more from ICL. Additionally, PEFT\\nsignificantly enhances the performance of Llama-3.1-8B-Instruct in both\\nevaluation tasks.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

幻觉,即生成与事实不符的内容,是大型语言模型(LLM)中一个日益严峻的挑战。现有的检测和缓解方法往往是孤立的,不足以满足特定领域的需求,缺乏标准化的管道。本文介绍了 THaMES(Tool for HallucinationMitigations and EvaluationS,幻觉识别与评估工具),它是一个集成框架和库,可解决这一空白。THaMES 为评估和减轻 LLM 中的幻觉提供了端到端的解决方案,具有自动测试集生成、多方面基准测试和可调整的减轻策略等特点。它可以从任何语料库自动生成测试集,通过批处理、加权采样和反事实验证等技术确保数据的高质量、多样性和成本效益。THaMES 评估了模型在文本生成和二元分类等各种任务中检测和减少幻觉的能力,并应用了最佳缓解策略,如上下文学习 (ICL)、检索增强生成 (RAG) 和参数高效微调 (PEFT)。使用学术论文、政治新闻和维基百科等知识库对最先进的 LLM 进行评估后发现,GPT-4o 等商业模型从 RAG 中获得的收益比 ICL 更大,而 Llama-3.1-8B-Instruct 和 Mistral-Nemo 等开放重量模型从 ICL 中获得的收益更大。此外,PEFT 显著提高了 Llama-3.1-8B-Instruct 在双评估任务中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models
Hallucination, the generation of factually incorrect content, is a growing challenge in Large Language Models (LLMs). Existing detection and mitigation methods are often isolated and insufficient for domain-specific needs, lacking a standardized pipeline. This paper introduces THaMES (Tool for Hallucination Mitigations and EvaluationS), an integrated framework and library addressing this gap. THaMES offers an end-to-end solution for evaluating and mitigating hallucinations in LLMs, featuring automated test set generation, multifaceted benchmarking, and adaptable mitigation strategies. It automates test set creation from any corpus, ensuring high data quality, diversity, and cost-efficiency through techniques like batch processing, weighted sampling, and counterfactual validation. THaMES assesses a model's ability to detect and reduce hallucinations across various tasks, including text generation and binary classification, applying optimal mitigation strategies like In-Context Learning (ICL), Retrieval Augmented Generation (RAG), and Parameter-Efficient Fine-tuning (PEFT). Evaluations of state-of-the-art LLMs using a knowledge base of academic papers, political news, and Wikipedia reveal that commercial models like GPT-4o benefit more from RAG than ICL, while open-weight models like Llama-3.1-8B-Instruct and Mistral-Nemo gain more from ICL. Additionally, PEFT significantly enhances the performance of Llama-3.1-8B-Instruct in both evaluation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信