多文档接地多轮合成对话生成

Young-Suk Lee, Chulaka Gunasekara, Danish Contractor, Ramón Fernandez Astudillo, Radu Florian
{"title":"多文档接地多轮合成对话生成","authors":"Young-Suk Lee, Chulaka Gunasekara, Danish Contractor, Ramón Fernandez Astudillo, Radu Florian","doi":"arxiv-2409.11500","DOIUrl":null,"url":null,"abstract":"We introduce a technique for multi-document grounded multi-turn synthetic\ndialog generation that incorporates three main ideas. First, we control the\noverall dialog flow using taxonomy-driven user queries that are generated with\nChain-of-Thought (CoT) prompting. Second, we support the generation of\nmulti-document grounded dialogs by mimicking real-world use of retrievers to\nupdate the grounding documents after every user-turn in the dialog. Third, we\napply LLM-as-a-Judge to filter out queries with incorrect answers. Human\nevaluation of the synthetic dialog data suggests that the data is diverse,\ncoherent, and includes mostly correct answers. Both human and automatic\nevaluations of answerable queries indicate that models fine-tuned on synthetic\ndialogs consistently out-perform those fine-tuned on existing human generated\ntraining data across four publicly available multi-turn document grounded\nbenchmark test sets.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Document Grounded Multi-Turn Synthetic Dialog Generation\",\"authors\":\"Young-Suk Lee, Chulaka Gunasekara, Danish Contractor, Ramón Fernandez Astudillo, Radu Florian\",\"doi\":\"arxiv-2409.11500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a technique for multi-document grounded multi-turn synthetic\\ndialog generation that incorporates three main ideas. First, we control the\\noverall dialog flow using taxonomy-driven user queries that are generated with\\nChain-of-Thought (CoT) prompting. Second, we support the generation of\\nmulti-document grounded dialogs by mimicking real-world use of retrievers to\\nupdate the grounding documents after every user-turn in the dialog. Third, we\\napply LLM-as-a-Judge to filter out queries with incorrect answers. Human\\nevaluation of the synthetic dialog data suggests that the data is diverse,\\ncoherent, and includes mostly correct answers. Both human and automatic\\nevaluations of answerable queries indicate that models fine-tuned on synthetic\\ndialogs consistently out-perform those fine-tuned on existing human generated\\ntraining data across four publicly available multi-turn document grounded\\nbenchmark test sets.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种多文档多回合合成对话生成技术,其中包含三个主要思想。首先,我们使用分类法驱动的用户查询来控制整个对话流程,这些查询是通过思维链(CoT)提示生成的。其次,我们通过模拟现实世界中使用的检索器,在用户每次进入对话后更新基础文档,从而支持多文档基础对话的生成。第三,我们应用 LLM-as-a-Judge(LLM 即法官)来过滤掉答案不正确的查询。对合成对话数据的人工评估表明,这些数据是多样的、连贯的,而且大部分答案都是正确的。对可回答查询的人工评估和自动评估都表明,在四个公开的多轮文档基准测试集中,在合成对话上经过微调的模型始终优于在现有的人工生成的训练数据上经过微调的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Document Grounded Multi-Turn Synthetic Dialog Generation
We introduce a technique for multi-document grounded multi-turn synthetic dialog generation that incorporates three main ideas. First, we control the overall dialog flow using taxonomy-driven user queries that are generated with Chain-of-Thought (CoT) prompting. Second, we support the generation of multi-document grounded dialogs by mimicking real-world use of retrievers to update the grounding documents after every user-turn in the dialog. Third, we apply LLM-as-a-Judge to filter out queries with incorrect answers. Human evaluation of the synthetic dialog data suggests that the data is diverse, coherent, and includes mostly correct answers. Both human and automatic evaluations of answerable queries indicate that models fine-tuned on synthetic dialogs consistently out-perform those fine-tuned on existing human generated training data across four publicly available multi-turn document grounded benchmark test sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信