圆正交多项式集合的中观普遍性

Jonathan Breuer, Daniel Ofner
{"title":"圆正交多项式集合的中观普遍性","authors":"Jonathan Breuer, Daniel Ofner","doi":"arxiv-2409.09803","DOIUrl":null,"url":null,"abstract":"We study mesoscopic fluctuations of orthogonal polynomial ensembles on the\nunit circle. We show that asymptotics of such fluctuations are stable under\ndecaying perturbations of the recurrence coefficients, where the appropriate\ndecay rate depends on the scale considered. By directly proving Gaussian limits\nfor certain constant coefficient ensembles, we obtain mesoscopic scale Gaussian\nlimits for a large class of orthogonal polynomial ensembles on the unit circle. As a corollary we prove mesocopic central limit theorems (for all mesoscopic\nscales) for the $\\beta=2$ circular Jacobi ensembles with real parameter\n$\\delta>-1/2$.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscopic Universality for Circular Orthogonal Polynomial Ensembles\",\"authors\":\"Jonathan Breuer, Daniel Ofner\",\"doi\":\"arxiv-2409.09803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study mesoscopic fluctuations of orthogonal polynomial ensembles on the\\nunit circle. We show that asymptotics of such fluctuations are stable under\\ndecaying perturbations of the recurrence coefficients, where the appropriate\\ndecay rate depends on the scale considered. By directly proving Gaussian limits\\nfor certain constant coefficient ensembles, we obtain mesoscopic scale Gaussian\\nlimits for a large class of orthogonal polynomial ensembles on the unit circle. As a corollary we prove mesocopic central limit theorems (for all mesoscopic\\nscales) for the $\\\\beta=2$ circular Jacobi ensembles with real parameter\\n$\\\\delta>-1/2$.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了单位圆上正交多项式集合的介观波动。我们证明,在递推系数的衰减扰动下,这种波动的渐近线是稳定的,而适当的衰减率取决于所考虑的尺度。通过直接证明某些常数系数集合的高斯极限,我们得到了单位圆上一大类正交多项式集合的介观尺度高斯极限。作为推论,我们证明了实参数$\delta>-1/2$的$\beta=2$圆雅各比集合的中观中心极限定理(适用于所有中观尺度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesoscopic Universality for Circular Orthogonal Polynomial Ensembles
We study mesoscopic fluctuations of orthogonal polynomial ensembles on the unit circle. We show that asymptotics of such fluctuations are stable under decaying perturbations of the recurrence coefficients, where the appropriate decay rate depends on the scale considered. By directly proving Gaussian limits for certain constant coefficient ensembles, we obtain mesoscopic scale Gaussian limits for a large class of orthogonal polynomial ensembles on the unit circle. As a corollary we prove mesocopic central limit theorems (for all mesoscopic scales) for the $\beta=2$ circular Jacobi ensembles with real parameter $\delta>-1/2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信