复合均质流体流动的变量闭包

Theo Diamantakis, Ruiao Hu
{"title":"复合均质流体流动的变量闭包","authors":"Theo Diamantakis, Ruiao Hu","doi":"arxiv-2409.10408","DOIUrl":null,"url":null,"abstract":"The Stochastic Advection by Lie Transport is a variational formulation of\nstochastic fluid dynamics introduced to model the effects of unresolved scales,\nwhilst preserving the geometric structure of ideal fluid flows. In this work,\nwe show that the SALT equations can arise from the decomposition of the fluid\nflow map into its mean and fluctuating components. The fluctuating component is\nrealised as a prescribed stochastic diffeomorphism that introduces stochastic\ntransport into the system and we construct it using homogenisation theory. The\ndynamics of the mean component are derived from a variational principle\nutilising particular forms of variations that preserve the composite structure\nof the flow. Using a new variational principle, we show that SALT equations can\narise from random Lagrangians and are equivalent to random coefficient PDEs. We\nalso demonstrate how to modify the composite flow and the associated\nvariational principle to derive models inspired by the Lagrangian Averaged\nEuler-Poincare (LAEP) theory.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational closures for composite homogenised fluid flows\",\"authors\":\"Theo Diamantakis, Ruiao Hu\",\"doi\":\"arxiv-2409.10408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Stochastic Advection by Lie Transport is a variational formulation of\\nstochastic fluid dynamics introduced to model the effects of unresolved scales,\\nwhilst preserving the geometric structure of ideal fluid flows. In this work,\\nwe show that the SALT equations can arise from the decomposition of the fluid\\nflow map into its mean and fluctuating components. The fluctuating component is\\nrealised as a prescribed stochastic diffeomorphism that introduces stochastic\\ntransport into the system and we construct it using homogenisation theory. The\\ndynamics of the mean component are derived from a variational principle\\nutilising particular forms of variations that preserve the composite structure\\nof the flow. Using a new variational principle, we show that SALT equations can\\narise from random Lagrangians and are equivalent to random coefficient PDEs. We\\nalso demonstrate how to modify the composite flow and the associated\\nvariational principle to derive models inspired by the Lagrangian Averaged\\nEuler-Poincare (LAEP) theory.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

李氏输运随机吸附是随机流体动力学的一种变分公式,用于模拟未解决的尺度效应,同时保留理想流体流的几何结构。在这项工作中,我们证明了 SALT 方程可以通过将流体流图分解为平均分量和波动分量而产生。波动分量被视为一种规定的随机差分,它将随机传输引入系统,我们利用均质化理论构建了波动分量。均值分量的动力学原理来自变分原理,利用特定的变分形式保留了流动的复合结构。利用新的变分原理,我们证明了 SALT 方程可以从随机拉格朗日衍生出来,并等价于随机系数 PDE。我们还演示了如何修改复合流和相关的变分原理,以推导出受拉格朗日平均欧拉-平卡理论(LAEP)启发的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational closures for composite homogenised fluid flows
The Stochastic Advection by Lie Transport is a variational formulation of stochastic fluid dynamics introduced to model the effects of unresolved scales, whilst preserving the geometric structure of ideal fluid flows. In this work, we show that the SALT equations can arise from the decomposition of the fluid flow map into its mean and fluctuating components. The fluctuating component is realised as a prescribed stochastic diffeomorphism that introduces stochastic transport into the system and we construct it using homogenisation theory. The dynamics of the mean component are derived from a variational principle utilising particular forms of variations that preserve the composite structure of the flow. Using a new variational principle, we show that SALT equations can arise from random Lagrangians and are equivalent to random coefficient PDEs. We also demonstrate how to modify the composite flow and the associated variational principle to derive models inspired by the Lagrangian Averaged Euler-Poincare (LAEP) theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信