具有循环长程依赖性的随机 FPDE 的多尺度极限定理

Maha Mosaad A Alghamdi, Nikolai Leonenko, Andriy Olenko
{"title":"具有循环长程依赖性的随机 FPDE 的多尺度极限定理","authors":"Maha Mosaad A Alghamdi, Nikolai Leonenko, Andriy Olenko","doi":"arxiv-2409.09215","DOIUrl":null,"url":null,"abstract":"The paper studies solutions of stochastic partial differential equations with\nrandom initial conditions. First, it overviews some of the known results on\nscaled solutions of such equations and provides several explicit motivating\nexamples. Then, it proves multiscaling limit theorems for renormalized\nsolutions for the case of initial conditions subordinated to the random\nprocesses with cyclic long-range dependence. Two cases of stochastic partial\ndifferential equations are examined. The spectral and covariance\nrepresentations for the corresponding limit random fields are derived.\nAdditionally, it is discussed why analogous results are not valid for\nsubordinated cases with Hermite ranks greater than 1. Numerical examples that\nillustrate the obtained theoretical results are presented.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscaling limit theorems for stochastic FPDE with cyclic long-range dependence\",\"authors\":\"Maha Mosaad A Alghamdi, Nikolai Leonenko, Andriy Olenko\",\"doi\":\"arxiv-2409.09215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies solutions of stochastic partial differential equations with\\nrandom initial conditions. First, it overviews some of the known results on\\nscaled solutions of such equations and provides several explicit motivating\\nexamples. Then, it proves multiscaling limit theorems for renormalized\\nsolutions for the case of initial conditions subordinated to the random\\nprocesses with cyclic long-range dependence. Two cases of stochastic partial\\ndifferential equations are examined. The spectral and covariance\\nrepresentations for the corresponding limit random fields are derived.\\nAdditionally, it is discussed why analogous results are not valid for\\nsubordinated cases with Hermite ranks greater than 1. Numerical examples that\\nillustrate the obtained theoretical results are presented.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有随机初始条件的随机偏微分方程的解。首先,它概述了关于此类方程缩放解的一些已知结果,并提供了几个明确的激励示例。然后,针对初始条件从属于具有循环长程依赖性的随机过程的情况,证明了重规范化解的多尺度极限定理。研究了随机偏微分方程的两种情况。此外,还讨论了为什么类似结果不适用于赫米特秩大于 1 的从属情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscaling limit theorems for stochastic FPDE with cyclic long-range dependence
The paper studies solutions of stochastic partial differential equations with random initial conditions. First, it overviews some of the known results on scaled solutions of such equations and provides several explicit motivating examples. Then, it proves multiscaling limit theorems for renormalized solutions for the case of initial conditions subordinated to the random processes with cyclic long-range dependence. Two cases of stochastic partial differential equations are examined. The spectral and covariance representations for the corresponding limit random fields are derived. Additionally, it is discussed why analogous results are not valid for subordinated cases with Hermite ranks greater than 1. Numerical examples that illustrate the obtained theoretical results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信