巴拿赫空间上的通用广义函数和有限绝对连续度量

A. A. Dorogovtsev, Naoufel Salhi
{"title":"巴拿赫空间上的通用广义函数和有限绝对连续度量","authors":"A. A. Dorogovtsev, Naoufel Salhi","doi":"arxiv-2409.09303","DOIUrl":null,"url":null,"abstract":"In this paper we collect several examples of convergence of functions of\nrandom processes to generalized functionals of those processes. We remark that\nthe limit is always finitely absolutely continuous with respect to Wiener\nmeasure. We try to unify those examples in terms of convergence of probability\nmeasures in Banach spaces. The key notion is the condition of uniform finite\nabsolute continuity.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal generalized functionals and finitely absolutely continuous measures on Banach spaces\",\"authors\":\"A. A. Dorogovtsev, Naoufel Salhi\",\"doi\":\"arxiv-2409.09303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we collect several examples of convergence of functions of\\nrandom processes to generalized functionals of those processes. We remark that\\nthe limit is always finitely absolutely continuous with respect to Wiener\\nmeasure. We try to unify those examples in terms of convergence of probability\\nmeasures in Banach spaces. The key notion is the condition of uniform finite\\nabsolute continuity.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们收集了随机过程的函数向这些过程的广义函数收敛的几个例子。我们注意到,就维纳度量而言,极限总是有限绝对连续的。我们试图用巴拿赫空间中概率度量的收敛来统一这些例子。关键概念是均匀有限绝对连续性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal generalized functionals and finitely absolutely continuous measures on Banach spaces
In this paper we collect several examples of convergence of functions of random processes to generalized functionals of those processes. We remark that the limit is always finitely absolutely continuous with respect to Wiener measure. We try to unify those examples in terms of convergence of probability measures in Banach spaces. The key notion is the condition of uniform finite absolute continuity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信