{"title":"由 Chvátal 定理引发的 F$ 分布研究","authors":"Qianqian Zhou, Peng Lu, Zechun Hu","doi":"arxiv-2409.09420","DOIUrl":null,"url":null,"abstract":"Let $X_{d_1, d_2}$ be an $F$-random variable with parameters $d_1$ and $d_2,$\nand expectation $E[X_{d_1, d_2}]$. In this paper, for any $\\kappa>0,$ we\ninvestigate the infimum value of the probability $P(X_{d_1, d_2}\\leq \\kappa\nE[X_{d_1, d_2}])$. Our motivation comes from Chv\\'{a}tal's theorem on the\nbinomial distribution.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the $F$-distribution motivated by Chvátal's theorem\",\"authors\":\"Qianqian Zhou, Peng Lu, Zechun Hu\",\"doi\":\"arxiv-2409.09420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X_{d_1, d_2}$ be an $F$-random variable with parameters $d_1$ and $d_2,$\\nand expectation $E[X_{d_1, d_2}]$. In this paper, for any $\\\\kappa>0,$ we\\ninvestigate the infimum value of the probability $P(X_{d_1, d_2}\\\\leq \\\\kappa\\nE[X_{d_1, d_2}])$. Our motivation comes from Chv\\\\'{a}tal's theorem on the\\nbinomial distribution.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study on the $F$-distribution motivated by Chvátal's theorem
Let $X_{d_1, d_2}$ be an $F$-random variable with parameters $d_1$ and $d_2,$
and expectation $E[X_{d_1, d_2}]$. In this paper, for any $\kappa>0,$ we
investigate the infimum value of the probability $P(X_{d_1, d_2}\leq \kappa
E[X_{d_1, d_2}])$. Our motivation comes from Chv\'{a}tal's theorem on the
binomial distribution.