具有 i.i.d. 根的随机多项式的高斯-卢卡斯定理的渐近改进

Sean O'Rourke, Noah Williams
{"title":"具有 i.i.d. 根的随机多项式的高斯-卢卡斯定理的渐近改进","authors":"Sean O'Rourke, Noah Williams","doi":"arxiv-2409.09538","DOIUrl":null,"url":null,"abstract":"If $p:\\mathbb{C} \\to \\mathbb{C}$ is a non-constant polynomial, the\nGauss--Lucas theorem asserts that its critical points are contained in the\nconvex hull of its roots. We consider the case when $p$ is a random polynomial\nof degree $n$ with roots chosen independently from a radially symmetric,\ncompactly supported probably measure $\\mu$ in the complex plane. We show that\nthe largest (in magnitude) critical points are closely paired with the largest\nroots of $p$. This allows us to compute the asymptotic fluctuations of the\nlargest critical points as the degree $n$ tends to infinity. We show that the\nlimiting distribution of the fluctuations is described by either a Gaussian\ndistribution or a heavy-tailed stable distribution, depending on the behavior\nof $\\mu$ near the edge of its support. As a corollary, we obtain an asymptotic\nrefinement to the Gauss--Lucas theorem for random polynomials.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An asymptotic refinement of the Gauss-Lucas Theorem for random polynomials with i.i.d. roots\",\"authors\":\"Sean O'Rourke, Noah Williams\",\"doi\":\"arxiv-2409.09538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If $p:\\\\mathbb{C} \\\\to \\\\mathbb{C}$ is a non-constant polynomial, the\\nGauss--Lucas theorem asserts that its critical points are contained in the\\nconvex hull of its roots. We consider the case when $p$ is a random polynomial\\nof degree $n$ with roots chosen independently from a radially symmetric,\\ncompactly supported probably measure $\\\\mu$ in the complex plane. We show that\\nthe largest (in magnitude) critical points are closely paired with the largest\\nroots of $p$. This allows us to compute the asymptotic fluctuations of the\\nlargest critical points as the degree $n$ tends to infinity. We show that the\\nlimiting distribution of the fluctuations is described by either a Gaussian\\ndistribution or a heavy-tailed stable distribution, depending on the behavior\\nof $\\\\mu$ near the edge of its support. As a corollary, we obtain an asymptotic\\nrefinement to the Gauss--Lucas theorem for random polynomials.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果 $p:\mathbb{C}\到 \mathbb{C}$ 是一个非常数多项式,高斯-卢卡斯定理断言其临界点包含在其根的凸壳中。我们考虑的情况是,当 $p$ 是阶数为 $n$ 的随机多项式时,其根是从复平面中一个径向对称、紧凑支撑的可能度量 $\mu$ 中独立选择的。我们证明,最大(幅度)临界点与 $p$ 的最大根密切相关。这使我们能够计算最大临界点在阶数 $n$ 趋于无穷大时的渐近波动。我们证明,波动的极限分布可以用高斯分布或重尾稳定分布来描述,这取决于 $\mu$ 在其支持边缘附近的行为。作为推论,我们得到了随机多项式的高斯-卢卡斯定理的渐近修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An asymptotic refinement of the Gauss-Lucas Theorem for random polynomials with i.i.d. roots
If $p:\mathbb{C} \to \mathbb{C}$ is a non-constant polynomial, the Gauss--Lucas theorem asserts that its critical points are contained in the convex hull of its roots. We consider the case when $p$ is a random polynomial of degree $n$ with roots chosen independently from a radially symmetric, compactly supported probably measure $\mu$ in the complex plane. We show that the largest (in magnitude) critical points are closely paired with the largest roots of $p$. This allows us to compute the asymptotic fluctuations of the largest critical points as the degree $n$ tends to infinity. We show that the limiting distribution of the fluctuations is described by either a Gaussian distribution or a heavy-tailed stable distribution, depending on the behavior of $\mu$ near the edge of its support. As a corollary, we obtain an asymptotic refinement to the Gauss--Lucas theorem for random polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信