奇异 SPDEs 解的奇异性

Martin Hairer, Seiichiro Kusuoka, Hirotatsu Nagoji
{"title":"奇异 SPDEs 解的奇异性","authors":"Martin Hairer, Seiichiro Kusuoka, Hirotatsu Nagoji","doi":"arxiv-2409.10037","DOIUrl":null,"url":null,"abstract":"Building on the notes [Hai17], we give a sufficient condition for the\nmarginal distribution of the solution of singular SPDEs on the $d$-dimensional\ntorus to be singular with respect to the law of the Gaussian measure induced by\nthe linearised equation. As applications we obtain the singularity of the\n$\\Phi^4_3$-measure with respect to the Gaussian free field measure and the\nborder of parameters for the fractional $\\Phi^4$-measure to be singular with\nrespect to the Gaussian free field measure. Our approach is applicable to quite\na large class of singular SPDEs.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularity of solutions to singular SPDEs\",\"authors\":\"Martin Hairer, Seiichiro Kusuoka, Hirotatsu Nagoji\",\"doi\":\"arxiv-2409.10037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on the notes [Hai17], we give a sufficient condition for the\\nmarginal distribution of the solution of singular SPDEs on the $d$-dimensional\\ntorus to be singular with respect to the law of the Gaussian measure induced by\\nthe linearised equation. As applications we obtain the singularity of the\\n$\\\\Phi^4_3$-measure with respect to the Gaussian free field measure and the\\nborder of parameters for the fractional $\\\\Phi^4$-measure to be singular with\\nrespect to the Gaussian free field measure. Our approach is applicable to quite\\na large class of singular SPDEs.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在注释[Hai17]的基础上,我们给出了一个充分条件,即关于线性化方程所诱导的高斯度量定律,$d$维torus上奇异SPDEs解的边际分布是奇异的。作为应用,我们得到了$\Phi^4_3$-测度相对于高斯自由场测度的奇异性,以及分数$\Phi^4$-测度相对于高斯自由场测度奇异的参数边界。我们的方法适用于相当大的一类奇异 SPDEs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularity of solutions to singular SPDEs
Building on the notes [Hai17], we give a sufficient condition for the marginal distribution of the solution of singular SPDEs on the $d$-dimensional torus to be singular with respect to the law of the Gaussian measure induced by the linearised equation. As applications we obtain the singularity of the $\Phi^4_3$-measure with respect to the Gaussian free field measure and the border of parameters for the fractional $\Phi^4$-measure to be singular with respect to the Gaussian free field measure. Our approach is applicable to quite a large class of singular SPDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信