ProSLM : 用于可解释的特定领域知识型问题解答的 Prolog 协同语言模型

Priyesh Vakharia, Abigail Kufeldt, Max Meyers, Ian Lane, Leilani Gilpin
{"title":"ProSLM : 用于可解释的特定领域知识型问题解答的 Prolog 协同语言模型","authors":"Priyesh Vakharia, Abigail Kufeldt, Max Meyers, Ian Lane, Leilani Gilpin","doi":"arxiv-2409.11589","DOIUrl":null,"url":null,"abstract":"Neurosymbolic approaches can add robustness to opaque neural systems by\nincorporating explainable symbolic representations. However, previous\napproaches have not used formal logic to contextualize queries to and validate\noutputs of large language models (LLMs). We propose \\systemname{}, a novel\nneurosymbolic framework, to improve the robustness and reliability of LLMs in\nquestion-answering tasks. We provide \\systemname{} with a domain-specific\nknowledge base, a logical reasoning system, and an integration to an existing\nLLM. This framework has two capabilities (1) context gathering: generating\nexplainable and relevant context for a given query, and (2) validation:\nconfirming and validating the factual accuracy of a statement in accordance\nwith a knowledge base (KB). Our work opens a new area of neurosymbolic\ngenerative AI text validation and user personalization.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ProSLM : A Prolog Synergized Language Model for explainable Domain Specific Knowledge Based Question Answering\",\"authors\":\"Priyesh Vakharia, Abigail Kufeldt, Max Meyers, Ian Lane, Leilani Gilpin\",\"doi\":\"arxiv-2409.11589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurosymbolic approaches can add robustness to opaque neural systems by\\nincorporating explainable symbolic representations. However, previous\\napproaches have not used formal logic to contextualize queries to and validate\\noutputs of large language models (LLMs). We propose \\\\systemname{}, a novel\\nneurosymbolic framework, to improve the robustness and reliability of LLMs in\\nquestion-answering tasks. We provide \\\\systemname{} with a domain-specific\\nknowledge base, a logical reasoning system, and an integration to an existing\\nLLM. This framework has two capabilities (1) context gathering: generating\\nexplainable and relevant context for a given query, and (2) validation:\\nconfirming and validating the factual accuracy of a statement in accordance\\nwith a knowledge base (KB). Our work opens a new area of neurosymbolic\\ngenerative AI text validation and user personalization.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经符号方法可以通过纳入可解释的符号表示,为不透明的神经系统增加鲁棒性。然而,以前的方法并没有使用形式逻辑来对大型语言模型(LLM)的查询和输出进行语境化验证。我们提出了一个新颖的神经符号框架--systemname{},以提高大型语言模型在问题解答任务中的稳健性和可靠性。我们为systemname{}提供了一个特定领域的知识库、一个逻辑推理系统和一个与现有LLM的集成。该框架有两个功能:(1)上下文收集:为给定查询生成可解释的相关上下文;(2)验证:根据知识库(KB)确认和验证语句的事实准确性。我们的工作开辟了神经符号生成人工智能文本验证和用户个性化的新领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ProSLM : A Prolog Synergized Language Model for explainable Domain Specific Knowledge Based Question Answering
Neurosymbolic approaches can add robustness to opaque neural systems by incorporating explainable symbolic representations. However, previous approaches have not used formal logic to contextualize queries to and validate outputs of large language models (LLMs). We propose \systemname{}, a novel neurosymbolic framework, to improve the robustness and reliability of LLMs in question-answering tasks. We provide \systemname{} with a domain-specific knowledge base, a logical reasoning system, and an integration to an existing LLM. This framework has two capabilities (1) context gathering: generating explainable and relevant context for a given query, and (2) validation: confirming and validating the factual accuracy of a statement in accordance with a knowledge base (KB). Our work opens a new area of neurosymbolic generative AI text validation and user personalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信