基金会模型中的类人情感认知

Kanishk Gandhi, Zoe Lynch, Jan-Philipp Fränken, Kayla Patterson, Sharon Wambu, Tobias Gerstenberg, Desmond C. Ong, Noah D. Goodman
{"title":"基金会模型中的类人情感认知","authors":"Kanishk Gandhi, Zoe Lynch, Jan-Philipp Fränken, Kayla Patterson, Sharon Wambu, Tobias Gerstenberg, Desmond C. Ong, Noah D. Goodman","doi":"arxiv-2409.11733","DOIUrl":null,"url":null,"abstract":"Understanding emotions is fundamental to human interaction and experience.\nHumans easily infer emotions from situations or facial expressions, situations\nfrom emotions, and do a variety of other \\emph{affective cognition}. How adept\nis modern AI at these inferences? We introduce an evaluation framework for\ntesting affective cognition in foundation models. Starting from psychological\ntheory, we generate 1,280 diverse scenarios exploring relationships between\nappraisals, emotions, expressions, and outcomes. We evaluate the abilities of\nfoundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across\ncarefully selected conditions. Our results show foundation models tend to agree\nwith human intuitions, matching or exceeding interparticipant agreement. In\nsome conditions, models are ``superhuman'' -- they better predict modal human\njudgements than the average human. All models benefit from chain-of-thought\nreasoning. This suggests foundation models have acquired a human-like\nunderstanding of emotions and their influence on beliefs and behavior.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-like Affective Cognition in Foundation Models\",\"authors\":\"Kanishk Gandhi, Zoe Lynch, Jan-Philipp Fränken, Kayla Patterson, Sharon Wambu, Tobias Gerstenberg, Desmond C. Ong, Noah D. Goodman\",\"doi\":\"arxiv-2409.11733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding emotions is fundamental to human interaction and experience.\\nHumans easily infer emotions from situations or facial expressions, situations\\nfrom emotions, and do a variety of other \\\\emph{affective cognition}. How adept\\nis modern AI at these inferences? We introduce an evaluation framework for\\ntesting affective cognition in foundation models. Starting from psychological\\ntheory, we generate 1,280 diverse scenarios exploring relationships between\\nappraisals, emotions, expressions, and outcomes. We evaluate the abilities of\\nfoundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across\\ncarefully selected conditions. Our results show foundation models tend to agree\\nwith human intuitions, matching or exceeding interparticipant agreement. In\\nsome conditions, models are ``superhuman'' -- they better predict modal human\\njudgements than the average human. All models benefit from chain-of-thought\\nreasoning. This suggests foundation models have acquired a human-like\\nunderstanding of emotions and their influence on beliefs and behavior.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类很容易从情境或面部表情中推断出情绪,从情绪中推断出情境,并进行其他各种情感认知。现代人工智能在这些推断方面的能力如何?我们引入了一个评估框架,用于测试基础模型中的情感认知。从心理学理论出发,我们生成了 1280 个不同的场景,探索评价、情绪、表达和结果之间的关系。我们评估了基础模型(GPT-4、Claude-3、Gemini-1.5-Pro)和人类(N = 567)在精心选择的条件下的能力。我们的结果表明,基础模型往往与人类的直觉一致,符合或超过参与者之间的一致。在某些条件下,模型是 "超人"--它们比普通人更好地预测了人类的模态判断。所有模型都受益于思维链推理。这表明基础模型对情绪及其对信念和行为的影响有了类似人类的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-like Affective Cognition in Foundation Models
Understanding emotions is fundamental to human interaction and experience. Humans easily infer emotions from situations or facial expressions, situations from emotions, and do a variety of other \emph{affective cognition}. How adept is modern AI at these inferences? We introduce an evaluation framework for testing affective cognition in foundation models. Starting from psychological theory, we generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes. We evaluate the abilities of foundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across carefully selected conditions. Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement. In some conditions, models are ``superhuman'' -- they better predict modal human judgements than the average human. All models benefit from chain-of-thought reasoning. This suggests foundation models have acquired a human-like understanding of emotions and their influence on beliefs and behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信