通过旋转盘电极上的 $${{{H}}^{+}$ 和 $${{{{H}}}_{2}{{O}}$ 还原进行氢演化的数学建模:理论和数值方面的问题

IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
K. V. Tamil Selvi, Navnit Jha, A. Eswari, L. Rajendran
{"title":"通过旋转盘电极上的 $${{{H}}^{+}$ 和 $${{{{H}}}_{2}{{O}}$ 还原进行氢演化的数学建模:理论和数值方面的问题","authors":"K. V. Tamil Selvi, Navnit Jha, A. Eswari, L. Rajendran","doi":"10.1007/s10910-024-01675-9","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses mathematical model of hydrogen evolution via <span>\\({H}^{+}\\)</span> and <span>\\({H}_{2}O\\)</span> reduction at a rotating disc electrode. Rotating disc electrodes are the preferred technology for analysing electrochemical processes in electrically powered cells and another rotating machinery, such as combustion engines, air compressors, gearboxes, and generators. The theory of nonlinear convection–diffusion equations provides the foundation for the model. In the present study, the Akbari-Ganji approach is utilised to solve, concurrently, the mass transport equations of <span>\\({H}^{+}\\)</span> and <span>\\({OH}^{-}\\)</span> in the electrolyte and on the electrode surface under steady-state circumstances. A general and simple analytical expression is obtained for the reactants' hydrogen and hydroxide ion concentrations. Additionally, numerical solutions using non-standard finite difference methods are presented, and compared with the analytical solution. The exact solution for the limiting case results is presented and examined with the general results. Furthermore, the graphs and tables that compare the theoretical and numerical solutions demonstrated the accuracy and dependability of our paradigm.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of hydrogen evolution by $${{{H}}}^{+}$$ and $${{{H}}}_{2}{{O}}$$ reduction at a rotating disk electrode: theoretical and numerical aspects\",\"authors\":\"K. V. Tamil Selvi, Navnit Jha, A. Eswari, L. Rajendran\",\"doi\":\"10.1007/s10910-024-01675-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper discusses mathematical model of hydrogen evolution via <span>\\\\({H}^{+}\\\\)</span> and <span>\\\\({H}_{2}O\\\\)</span> reduction at a rotating disc electrode. Rotating disc electrodes are the preferred technology for analysing electrochemical processes in electrically powered cells and another rotating machinery, such as combustion engines, air compressors, gearboxes, and generators. The theory of nonlinear convection–diffusion equations provides the foundation for the model. In the present study, the Akbari-Ganji approach is utilised to solve, concurrently, the mass transport equations of <span>\\\\({H}^{+}\\\\)</span> and <span>\\\\({OH}^{-}\\\\)</span> in the electrolyte and on the electrode surface under steady-state circumstances. A general and simple analytical expression is obtained for the reactants' hydrogen and hydroxide ion concentrations. Additionally, numerical solutions using non-standard finite difference methods are presented, and compared with the analytical solution. The exact solution for the limiting case results is presented and examined with the general results. Furthermore, the graphs and tables that compare the theoretical and numerical solutions demonstrated the accuracy and dependability of our paradigm.</p>\",\"PeriodicalId\":648,\"journal\":{\"name\":\"Journal of Mathematical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10910-024-01675-9\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10910-024-01675-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在旋转圆盘电极上通过 \({H}^{+}\) 和 \({H}_{2}O\) 还原进行氢演化的数学模型。旋转盘电极是分析电力电池和其他旋转机械(如内燃机、空气压缩机、齿轮箱和发电机)中电化学过程的首选技术。非线性对流扩散方程理论为该模型提供了基础。在本研究中,利用 Akbari-Ganji 方法同时求解了稳态情况下电解质中和电 极表面上的\({H}^{+}\) 和\({OH}^{-}\) 的质量传输方程。对于反应物的氢离子和氢氧根离子浓度,我们得到了一个通用而简单的分析表达式。此外,还给出了使用非标准有限差分法的数值解,并与分析解进行了比较。提出了极限情况结果的精确解,并与一般结果进行了比较。此外,比较理论解和数值解的图表也证明了我们范式的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mathematical modeling of hydrogen evolution by $${{{H}}}^{+}$$ and $${{{H}}}_{2}{{O}}$$ reduction at a rotating disk electrode: theoretical and numerical aspects

Mathematical modeling of hydrogen evolution by $${{{H}}}^{+}$$ and $${{{H}}}_{2}{{O}}$$ reduction at a rotating disk electrode: theoretical and numerical aspects

This paper discusses mathematical model of hydrogen evolution via \({H}^{+}\) and \({H}_{2}O\) reduction at a rotating disc electrode. Rotating disc electrodes are the preferred technology for analysing electrochemical processes in electrically powered cells and another rotating machinery, such as combustion engines, air compressors, gearboxes, and generators. The theory of nonlinear convection–diffusion equations provides the foundation for the model. In the present study, the Akbari-Ganji approach is utilised to solve, concurrently, the mass transport equations of \({H}^{+}\) and \({OH}^{-}\) in the electrolyte and on the electrode surface under steady-state circumstances. A general and simple analytical expression is obtained for the reactants' hydrogen and hydroxide ion concentrations. Additionally, numerical solutions using non-standard finite difference methods are presented, and compared with the analytical solution. The exact solution for the limiting case results is presented and examined with the general results. Furthermore, the graphs and tables that compare the theoretical and numerical solutions demonstrated the accuracy and dependability of our paradigm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Chemistry
Journal of Mathematical Chemistry 化学-化学综合
CiteScore
3.70
自引率
17.60%
发文量
105
审稿时长
6 months
期刊介绍: The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches. Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信