用于分布外意图检测的基于多样性的信道原型学习

Bo Liu, Liming Zhan, Yujie Feng, Zexin Lu, Chengqiang Xie, Lei Xue, Xiao-Ming Wu, Albert Y. S. Lam
{"title":"用于分布外意图检测的基于多样性的信道原型学习","authors":"Bo Liu, Liming Zhan, Yujie Feng, Zexin Lu, Chengqiang Xie, Lei Xue, Xiao-Ming Wu, Albert Y. S. Lam","doi":"arxiv-2409.11114","DOIUrl":null,"url":null,"abstract":"In the realm of task-oriented dialogue systems, a robust intent detection\nmechanism must effectively handle malformed utterances encountered in\nreal-world scenarios. This study presents a novel fine-tuning framework for\nlarge language models (LLMs) aimed at enhancing in-distribution (ID) intent\nclassification and out-of-distribution (OOD) intent detection, which utilizes\nsemantic matching with prototypes derived from ID class names. By harnessing\nthe highly distinguishable representations of LLMs, we construct semantic\nprototypes for each ID class using a diversity-grounded prompt tuning approach.\nWe rigorously test our framework in a challenging OOD context, where ID and OOD\nclasses are semantically close yet distinct, referred to as \\emph{near} OOD\ndetection. For a thorough assessment, we benchmark our method against the\nprevalent fine-tuning approaches. The experimental findings reveal that our\nmethod demonstrates superior performance in both few-shot ID intent\nclassification and near-OOD intent detection tasks.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection\",\"authors\":\"Bo Liu, Liming Zhan, Yujie Feng, Zexin Lu, Chengqiang Xie, Lei Xue, Xiao-Ming Wu, Albert Y. S. Lam\",\"doi\":\"arxiv-2409.11114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of task-oriented dialogue systems, a robust intent detection\\nmechanism must effectively handle malformed utterances encountered in\\nreal-world scenarios. This study presents a novel fine-tuning framework for\\nlarge language models (LLMs) aimed at enhancing in-distribution (ID) intent\\nclassification and out-of-distribution (OOD) intent detection, which utilizes\\nsemantic matching with prototypes derived from ID class names. By harnessing\\nthe highly distinguishable representations of LLMs, we construct semantic\\nprototypes for each ID class using a diversity-grounded prompt tuning approach.\\nWe rigorously test our framework in a challenging OOD context, where ID and OOD\\nclasses are semantically close yet distinct, referred to as \\\\emph{near} OOD\\ndetection. For a thorough assessment, we benchmark our method against the\\nprevalent fine-tuning approaches. The experimental findings reveal that our\\nmethod demonstrates superior performance in both few-shot ID intent\\nclassification and near-OOD intent detection tasks.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在面向任务的对话系统领域,强大的意图检测机制必须能有效处理真实世界场景中遇到的畸形语句。本研究为大语言模型(LLMs)提出了一个新颖的微调框架,旨在增强分布内(ID)意图分类和分布外(OOD)意图检测,该框架利用了从 ID 类名衍生出的原型进行语义匹配。我们在具有挑战性的 OOD 环境中对我们的框架进行了严格测试,在这种环境中,ID 和 OOD 类别在语义上非常接近,但又截然不同,这被称为 "接近 "OOD 检测。OODdetection.为了进行全面评估,我们将我们的方法与流行的微调方法进行了比较。实验结果表明,我们的方法在少量 ID 意图分类和近似 OOD 意图检测任务中都表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection
In the realm of task-oriented dialogue systems, a robust intent detection mechanism must effectively handle malformed utterances encountered in real-world scenarios. This study presents a novel fine-tuning framework for large language models (LLMs) aimed at enhancing in-distribution (ID) intent classification and out-of-distribution (OOD) intent detection, which utilizes semantic matching with prototypes derived from ID class names. By harnessing the highly distinguishable representations of LLMs, we construct semantic prototypes for each ID class using a diversity-grounded prompt tuning approach. We rigorously test our framework in a challenging OOD context, where ID and OOD classes are semantically close yet distinct, referred to as \emph{near} OOD detection. For a thorough assessment, we benchmark our method against the prevalent fine-tuning approaches. The experimental findings reveal that our method demonstrates superior performance in both few-shot ID intent classification and near-OOD intent detection tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信