提高视觉增强语言模型的效率

Paula Ontalvilla, Aitor Ormazabal, Gorka Azkune
{"title":"提高视觉增强语言模型的效率","authors":"Paula Ontalvilla, Aitor Ormazabal, Gorka Azkune","doi":"arxiv-2409.11148","DOIUrl":null,"url":null,"abstract":"Despite the impressive performance of autoregressive Language Models (LM) it\nhas been shown that due to reporting bias, LMs lack visual knowledge, i.e. they\ndo not know much about the visual world and its properties. To augment LMs with\nvisual knowledge, existing solutions often rely on explicit images, requiring\ntime-consuming retrieval or image generation systems. This paper shows that\nexplicit images are not necessary to visually augment an LM. Instead, we use\nvisually-grounded text representations obtained from the well-known CLIP\nmultimodal system. For a fair comparison, we modify VALM, a visually-augmented\nLM which uses image retrieval and representation, to work directly with\nvisually-grounded text representations. We name this new model BLIND-VALM. We\nshow that BLIND-VALM performs on par with VALM for Visual Language\nUnderstanding (VLU), Natural Language Understanding (NLU) and Language Modeling\ntasks, despite being significantly more efficient and simpler. We also show\nthat scaling up our model within the compute budget of VALM, either increasing\nthe model or pre-training corpus size, we outperform VALM for all the\nevaluation tasks.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Efficiency of Visually Augmented Language Models\",\"authors\":\"Paula Ontalvilla, Aitor Ormazabal, Gorka Azkune\",\"doi\":\"arxiv-2409.11148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the impressive performance of autoregressive Language Models (LM) it\\nhas been shown that due to reporting bias, LMs lack visual knowledge, i.e. they\\ndo not know much about the visual world and its properties. To augment LMs with\\nvisual knowledge, existing solutions often rely on explicit images, requiring\\ntime-consuming retrieval or image generation systems. This paper shows that\\nexplicit images are not necessary to visually augment an LM. Instead, we use\\nvisually-grounded text representations obtained from the well-known CLIP\\nmultimodal system. For a fair comparison, we modify VALM, a visually-augmented\\nLM which uses image retrieval and representation, to work directly with\\nvisually-grounded text representations. We name this new model BLIND-VALM. We\\nshow that BLIND-VALM performs on par with VALM for Visual Language\\nUnderstanding (VLU), Natural Language Understanding (NLU) and Language Modeling\\ntasks, despite being significantly more efficient and simpler. We also show\\nthat scaling up our model within the compute budget of VALM, either increasing\\nthe model or pre-training corpus size, we outperform VALM for all the\\nevaluation tasks.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管自回归语言模型(LM)的性能令人印象深刻,但研究表明,由于报告偏差,LM 缺乏视觉知识,也就是说,它们对视觉世界及其属性知之甚少。为了用视觉知识增强 LM,现有的解决方案通常依赖于显式图像,这需要耗时的检索或图像生成系统。本文展示了视觉增强 LM 不需要显式图像。相反,我们使用了从著名的 CLIP 多模态系统中获得的视觉基础文本表征。为了进行公平比较,我们修改了视觉增强 LM(使用图像检索和表示)VALM,使其直接使用视觉基础文本表示。我们将这个新模型命名为 BLIND-VALM。我们发现,BLIND-VALM 在视觉语言理解(VLU)、自然语言理解(NLU)和语言建模任务方面的表现与 VALM 不相上下,而且效率更高、更简单。我们还表明,在 VALM 的计算预算范围内扩展我们的模型,无论是增加模型还是增加预训练语料库规模,我们在所有评估任务中的表现都优于 VALM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Efficiency of Visually Augmented Language Models
Despite the impressive performance of autoregressive Language Models (LM) it has been shown that due to reporting bias, LMs lack visual knowledge, i.e. they do not know much about the visual world and its properties. To augment LMs with visual knowledge, existing solutions often rely on explicit images, requiring time-consuming retrieval or image generation systems. This paper shows that explicit images are not necessary to visually augment an LM. Instead, we use visually-grounded text representations obtained from the well-known CLIP multimodal system. For a fair comparison, we modify VALM, a visually-augmented LM which uses image retrieval and representation, to work directly with visually-grounded text representations. We name this new model BLIND-VALM. We show that BLIND-VALM performs on par with VALM for Visual Language Understanding (VLU), Natural Language Understanding (NLU) and Language Modeling tasks, despite being significantly more efficient and simpler. We also show that scaling up our model within the compute budget of VALM, either increasing the model or pre-training corpus size, we outperform VALM for all the evaluation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信