评估压缩技术对大型语言模型特定任务性能的影响

Bishwash Khanal, Jeffery M. Capone
{"title":"评估压缩技术对大型语言模型特定任务性能的影响","authors":"Bishwash Khanal, Jeffery M. Capone","doi":"arxiv-2409.11233","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) offer powerful capabilities but incur\nsubstantial computational costs, driving the need for efficient compression\ntechniques. This study evaluates the impact of popular compression methods -\nMagnitude Pruning, SparseGPT, and Wanda - on the LLaMA-2-7B model, focusing on\nthe trade-offs between model size reduction, downstream task performance, and\nthe role of calibration data. Our findings reveal that while SparseGPT and\nWanda preserve perplexity even at 50% sparsity, they suffer significant\ndegradation on downstream tasks, highlighting the inadequacy of perplexity as\nthe sole evaluation metric. To address this, we introduce Jensen-Shannon (JS)\nDivergence as a more comprehensive metric that captures nuanced changes in\nmodel behavior post-compression. We further demonstrate that task-specific\ncalibration data significantly enhances the downstream performance of\ncompressed models compared to general calibration data. This research\nunderscores the necessity for diverse evaluation metrics and careful\ncalibration data selection to fully understand the complexities of LLM\ncompression and its implications for practical applications.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Impact of Compression Techniques on Task-Specific Performance of Large Language Models\",\"authors\":\"Bishwash Khanal, Jeffery M. Capone\",\"doi\":\"arxiv-2409.11233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) offer powerful capabilities but incur\\nsubstantial computational costs, driving the need for efficient compression\\ntechniques. This study evaluates the impact of popular compression methods -\\nMagnitude Pruning, SparseGPT, and Wanda - on the LLaMA-2-7B model, focusing on\\nthe trade-offs between model size reduction, downstream task performance, and\\nthe role of calibration data. Our findings reveal that while SparseGPT and\\nWanda preserve perplexity even at 50% sparsity, they suffer significant\\ndegradation on downstream tasks, highlighting the inadequacy of perplexity as\\nthe sole evaluation metric. To address this, we introduce Jensen-Shannon (JS)\\nDivergence as a more comprehensive metric that captures nuanced changes in\\nmodel behavior post-compression. We further demonstrate that task-specific\\ncalibration data significantly enhances the downstream performance of\\ncompressed models compared to general calibration data. This research\\nunderscores the necessity for diverse evaluation metrics and careful\\ncalibration data selection to fully understand the complexities of LLM\\ncompression and its implications for practical applications.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)功能强大,但计算成本高昂,因此需要高效的压缩技术。本研究评估了流行的压缩方法--Magnitude Pruning、SparseGPT 和 Wanda--对 LLaMA-2-7B 模型的影响,重点关注模型大小缩减、下游任务性能和校准数据作用之间的权衡。我们的研究结果表明,虽然 SparseGPT 和 Wanda 在稀疏度为 50% 时仍能保持可知度,但它们在下游任务中的表现却大不如前,这凸显了可知度作为唯一评价指标的不足。为了解决这个问题,我们引入了詹森-香农(Jensen-Shannon,JS)发散度作为更全面的指标,以捕捉压缩后模型行为的细微变化。我们进一步证明,与一般校准数据相比,特定任务校准数据能显著提高压缩模型的下游性能。这项研究证明,要充分了解 LLM 压缩的复杂性及其对实际应用的影响,就必须采用不同的评估指标,并谨慎选择校准数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Impact of Compression Techniques on Task-Specific Performance of Large Language Models
Large language models (LLMs) offer powerful capabilities but incur substantial computational costs, driving the need for efficient compression techniques. This study evaluates the impact of popular compression methods - Magnitude Pruning, SparseGPT, and Wanda - on the LLaMA-2-7B model, focusing on the trade-offs between model size reduction, downstream task performance, and the role of calibration data. Our findings reveal that while SparseGPT and Wanda preserve perplexity even at 50% sparsity, they suffer significant degradation on downstream tasks, highlighting the inadequacy of perplexity as the sole evaluation metric. To address this, we introduce Jensen-Shannon (JS) Divergence as a more comprehensive metric that captures nuanced changes in model behavior post-compression. We further demonstrate that task-specific calibration data significantly enhances the downstream performance of compressed models compared to general calibration data. This research underscores the necessity for diverse evaluation metrics and careful calibration data selection to fully understand the complexities of LLM compression and its implications for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信