LOLA -- 一种开源的大规模多语种大语言模型

Nikit Srivastava, Denis Kuchelev, Tatiana Moteu, Kshitij Shetty, Michael Roeder, Diego Moussallem, Hamada Zahera, Axel-Cyrille Ngonga Ngomo
{"title":"LOLA -- 一种开源的大规模多语种大语言模型","authors":"Nikit Srivastava, Denis Kuchelev, Tatiana Moteu, Kshitij Shetty, Michael Roeder, Diego Moussallem, Hamada Zahera, Axel-Cyrille Ngonga Ngomo","doi":"arxiv-2409.11272","DOIUrl":null,"url":null,"abstract":"This paper presents LOLA, a massively multilingual large language model\ntrained on more than 160 languages using a sparse Mixture-of-Experts\nTransformer architecture. Our architectural and implementation choices address\nthe challenge of harnessing linguistic diversity while maintaining efficiency\nand avoiding the common pitfalls of multilinguality. Our analysis of the\nevaluation results shows competitive performance in natural language generation\nand understanding tasks. Additionally, we demonstrate how the learned\nexpert-routing mechanism exploits implicit phylogenetic linguistic patterns to\npotentially alleviate the curse of multilinguality. We provide an in-depth look\nat the training process, an analysis of the datasets, and a balanced\nexploration of the model's strengths and limitations. As an open-source model,\nLOLA promotes reproducibility and serves as a robust foundation for future\nresearch. Our findings enable the development of compute-efficient multilingual\nmodels with strong, scalable performance across languages.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LOLA -- An Open-Source Massively Multilingual Large Language Model\",\"authors\":\"Nikit Srivastava, Denis Kuchelev, Tatiana Moteu, Kshitij Shetty, Michael Roeder, Diego Moussallem, Hamada Zahera, Axel-Cyrille Ngonga Ngomo\",\"doi\":\"arxiv-2409.11272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents LOLA, a massively multilingual large language model\\ntrained on more than 160 languages using a sparse Mixture-of-Experts\\nTransformer architecture. Our architectural and implementation choices address\\nthe challenge of harnessing linguistic diversity while maintaining efficiency\\nand avoiding the common pitfalls of multilinguality. Our analysis of the\\nevaluation results shows competitive performance in natural language generation\\nand understanding tasks. Additionally, we demonstrate how the learned\\nexpert-routing mechanism exploits implicit phylogenetic linguistic patterns to\\npotentially alleviate the curse of multilinguality. We provide an in-depth look\\nat the training process, an analysis of the datasets, and a balanced\\nexploration of the model's strengths and limitations. As an open-source model,\\nLOLA promotes reproducibility and serves as a robust foundation for future\\nresearch. Our findings enable the development of compute-efficient multilingual\\nmodels with strong, scalable performance across languages.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍的 LOLA 是一种大规模多语言大型语言模型,它使用稀疏专家混合转换器架构在 160 多种语言上进行训练。我们在架构和实现方面的选择解决了在保持效率的同时利用语言多样性的难题,并避免了多语言性的常见缺陷。对评估结果的分析表明,我们在自然语言生成和理解任务中的表现极具竞争力。此外,我们还展示了所学的外显路由机制是如何利用隐含的系统发育语言模式来缓解多语言性诅咒的。我们深入探讨了训练过程,分析了数据集,并对模型的优势和局限性进行了均衡的探讨。作为一个开源模型,LOLA 促进了可重复性,并为未来研究奠定了坚实的基础。我们的研究成果有助于开发计算效率高的多语言模型,这些模型在不同语言间具有强大的可扩展性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LOLA -- An Open-Source Massively Multilingual Large Language Model
This paper presents LOLA, a massively multilingual large language model trained on more than 160 languages using a sparse Mixture-of-Experts Transformer architecture. Our architectural and implementation choices address the challenge of harnessing linguistic diversity while maintaining efficiency and avoiding the common pitfalls of multilinguality. Our analysis of the evaluation results shows competitive performance in natural language generation and understanding tasks. Additionally, we demonstrate how the learned expert-routing mechanism exploits implicit phylogenetic linguistic patterns to potentially alleviate the curse of multilinguality. We provide an in-depth look at the training process, an analysis of the datasets, and a balanced exploration of the model's strengths and limitations. As an open-source model, LOLA promotes reproducibility and serves as a robust foundation for future research. Our findings enable the development of compute-efficient multilingual models with strong, scalable performance across languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信