波茨自旋玻璃中的色彩对称破缺

Jean-Christophe Mourrat
{"title":"波茨自旋玻璃中的色彩对称破缺","authors":"Jean-Christophe Mourrat","doi":"arxiv-2409.10437","DOIUrl":null,"url":null,"abstract":"The Potts spin glass is an analogue of the Sherrington-Kirkpatrick model in\nwhich each spin can take one of $\\kappa$ possible values, which we interpret as\ncolors. It was suggested in arXiv:2310.06745 that the order parameter for this\nmodel is always invariant with respect to permutations of the colors. We show\nhere that this is false whenever $\\kappa \\ge 58$.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color symmetry breaking in the Potts spin glass\",\"authors\":\"Jean-Christophe Mourrat\",\"doi\":\"arxiv-2409.10437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Potts spin glass is an analogue of the Sherrington-Kirkpatrick model in\\nwhich each spin can take one of $\\\\kappa$ possible values, which we interpret as\\ncolors. It was suggested in arXiv:2310.06745 that the order parameter for this\\nmodel is always invariant with respect to permutations of the colors. We show\\nhere that this is false whenever $\\\\kappa \\\\ge 58$.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

波茨自旋玻璃是谢林顿-柯克帕特里克(Sherrington-Kirkpatrick)模型的一个类似物,其中每个自旋都可以取$\kappa$可能值中的一个,我们将其解释为颜色。有人在 arXiv:2310.06745 中提出,这个模型的阶次参数在颜色的排列上总是不变的。我们在这里证明,只要 $\kappa \ge 58$,这就是假的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color symmetry breaking in the Potts spin glass
The Potts spin glass is an analogue of the Sherrington-Kirkpatrick model in which each spin can take one of $\kappa$ possible values, which we interpret as colors. It was suggested in arXiv:2310.06745 that the order parameter for this model is always invariant with respect to permutations of the colors. We show here that this is false whenever $\kappa \ge 58$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信