瓦瑟斯坦距离平方的近似值及其在汉密尔顿-雅可比方程中的应用

Charles BertucciCMAP, Pierre Louis LionsCdF, CEREMADE
{"title":"瓦瑟斯坦距离平方的近似值及其在汉密尔顿-雅可比方程中的应用","authors":"Charles BertucciCMAP, Pierre Louis LionsCdF, CEREMADE","doi":"arxiv-2409.11793","DOIUrl":null,"url":null,"abstract":"We provide a simple $C^{1,1}$ approximation of the squared Wasserstein\ndistance on R^d when one of the two measures is fixed. This approximation\nconverges locally uniformly. More importantly, at points where the differential\nof the squared Wasserstein distance exists, it attracts the differentials of\nthe approximations at nearby points. Our method relies on the Hilbertian\nlifting of PL Lions and on the regularization in Hilbert spaces of Lasry and\nLions. We then provide an application of this result by using it to establish a\ncomparison principle for an Hamilton-Jacobi equation on the set of probability\nmeasures.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approximation of the squared Wasserstein distance and an application to Hamilton-Jacobi equations\",\"authors\":\"Charles BertucciCMAP, Pierre Louis LionsCdF, CEREMADE\",\"doi\":\"arxiv-2409.11793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a simple $C^{1,1}$ approximation of the squared Wasserstein\\ndistance on R^d when one of the two measures is fixed. This approximation\\nconverges locally uniformly. More importantly, at points where the differential\\nof the squared Wasserstein distance exists, it attracts the differentials of\\nthe approximations at nearby points. Our method relies on the Hilbertian\\nlifting of PL Lions and on the regularization in Hilbert spaces of Lasry and\\nLions. We then provide an application of this result by using it to establish a\\ncomparison principle for an Hamilton-Jacobi equation on the set of probability\\nmeasures.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了当两个度量之一固定时,R^d 上瓦塞尔斯特距离平方的一个简单$C^{1,1}$近似值。这个近似值在局部均匀收敛。更重要的是,在存在瓦瑟斯坦距离平方差的点上,它会吸引附近点的近似值差。我们的方法依赖于 PL Lions 的希尔伯特平移以及 Lasry 和 Lions 的希尔伯特空间正则化。然后,我们将这一结果应用于建立概率计量集上的汉密尔顿-雅可比方程的比较原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximation of the squared Wasserstein distance and an application to Hamilton-Jacobi equations
We provide a simple $C^{1,1}$ approximation of the squared Wasserstein distance on R^d when one of the two measures is fixed. This approximation converges locally uniformly. More importantly, at points where the differential of the squared Wasserstein distance exists, it attracts the differentials of the approximations at nearby points. Our method relies on the Hilbertian lifting of PL Lions and on the regularization in Hilbert spaces of Lasry and Lions. We then provide an application of this result by using it to establish a comparison principle for an Hamilton-Jacobi equation on the set of probability measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信