规则树的超均匀性

Mattias Byléhn
{"title":"规则树的超均匀性","authors":"Mattias Byléhn","doi":"arxiv-2409.10998","DOIUrl":null,"url":null,"abstract":"We study notions of hyperuniformity for invariant locally square-integrable\npoint processes in regular trees. We show that such point processes are never\ngeometrically hyperuniform, and if the diffraction measure has support in the\ncomplementary series then the process is geometrically hyperfluctuating along\nall subsequences of radii. A definition of spectral hyperuniformity and stealth\nof a point process is given in terms of vanishing of the complementary series\ndiffraction and sub-Poissonian decay of the principal series diffraction near\nthe endpoints of the principal spectrum. Our main contribution is providing\nexamples of stealthy invariant random lattice orbits in trees whose number\nvariance grows strictly slower than the volume along some unbounded sequence of\nradii. These random lattice orbits are constructed from the fundamental groups\nof complete graphs and the Petersen graph.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperuniformity in regular trees\",\"authors\":\"Mattias Byléhn\",\"doi\":\"arxiv-2409.10998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study notions of hyperuniformity for invariant locally square-integrable\\npoint processes in regular trees. We show that such point processes are never\\ngeometrically hyperuniform, and if the diffraction measure has support in the\\ncomplementary series then the process is geometrically hyperfluctuating along\\nall subsequences of radii. A definition of spectral hyperuniformity and stealth\\nof a point process is given in terms of vanishing of the complementary series\\ndiffraction and sub-Poissonian decay of the principal series diffraction near\\nthe endpoints of the principal spectrum. Our main contribution is providing\\nexamples of stealthy invariant random lattice orbits in trees whose number\\nvariance grows strictly slower than the volume along some unbounded sequence of\\nradii. These random lattice orbits are constructed from the fundamental groups\\nof complete graphs and the Petersen graph.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了规则树中不变局部平方可积分点过程的超均匀性概念。我们证明了这种点过程从来都不是几何超均匀的,而且如果衍射量在补数列中有支持,那么该过程沿着半径的所有子序列都是几何超波动的。根据补数列衍射的消失和主数列衍射在主频谱端点附近的亚泊松子衰减,给出了点过程的频谱超均匀性和隐蔽性的定义。我们的主要贡献是提供了树中隐形不变随机晶格轨道的例子,这些轨道的数方差沿着某个无约束的radii序列的增长速度严格慢于体积的增长速度。这些随机网格轨道是由完整图的基群和彼得森图构建的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperuniformity in regular trees
We study notions of hyperuniformity for invariant locally square-integrable point processes in regular trees. We show that such point processes are never geometrically hyperuniform, and if the diffraction measure has support in the complementary series then the process is geometrically hyperfluctuating along all subsequences of radii. A definition of spectral hyperuniformity and stealth of a point process is given in terms of vanishing of the complementary series diffraction and sub-Poissonian decay of the principal series diffraction near the endpoints of the principal spectrum. Our main contribution is providing examples of stealthy invariant random lattice orbits in trees whose number variance grows strictly slower than the volume along some unbounded sequence of radii. These random lattice orbits are constructed from the fundamental groups of complete graphs and the Petersen graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信