参数相关粗糙 SDEs 及其在粗糙 PDEs 中的应用

Fabio Bugini, Peter K. Friz, Wilhelm Stannat
{"title":"参数相关粗糙 SDEs 及其在粗糙 PDEs 中的应用","authors":"Fabio Bugini, Peter K. Friz, Wilhelm Stannat","doi":"arxiv-2409.11330","DOIUrl":null,"url":null,"abstract":"In this paper we generalize Krylov's theory on parameter-dependent stochastic\ndifferential equations to the framework of rough stochastic differential\nequations (rough SDEs), as initially introduced by Friz, Hocquet and L\\^e. We\nconsider a stochastic equation of the form $$ dX_t^\\zeta = b_t(\\zeta,X_t^\\zeta)\n\\ dt + \\sigma_t(\\zeta,X_t^\\zeta) \\ dB_t + \\beta_t (\\zeta,X_t^\\zeta)\nd\\mathbf{W}_t,$$ where $\\zeta$ is a parameter, $B$ denotes a Brownian motion\nand $\\mathbf{W}$ is a deterministic H\\\"older rough path. We investigate the\nconditions under which the solution $X$ exhibits continuity and/or\ndifferentiability with respect to the parameter $\\zeta$ in the\n$\\mathscr{L}$-sense, as defined by Krylov. As an application, we present an existence-and-uniqueness result for a class\nof rough partial differential equations (rough PDEs) of the form $$-du_t = L_t\nu_t dt + \\Gamma_t u_t d\\mathbf{W}_t, \\quad u_T =g.$$ We show that the solution\nadmits a Feynman--Kac type representation in terms of the solution of an\nappropriate rough SDE, where the initial time and the initial state play the\nrole of parameters.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter dependent rough SDEs with applications to rough PDEs\",\"authors\":\"Fabio Bugini, Peter K. Friz, Wilhelm Stannat\",\"doi\":\"arxiv-2409.11330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we generalize Krylov's theory on parameter-dependent stochastic\\ndifferential equations to the framework of rough stochastic differential\\nequations (rough SDEs), as initially introduced by Friz, Hocquet and L\\\\^e. We\\nconsider a stochastic equation of the form $$ dX_t^\\\\zeta = b_t(\\\\zeta,X_t^\\\\zeta)\\n\\\\ dt + \\\\sigma_t(\\\\zeta,X_t^\\\\zeta) \\\\ dB_t + \\\\beta_t (\\\\zeta,X_t^\\\\zeta)\\nd\\\\mathbf{W}_t,$$ where $\\\\zeta$ is a parameter, $B$ denotes a Brownian motion\\nand $\\\\mathbf{W}$ is a deterministic H\\\\\\\"older rough path. We investigate the\\nconditions under which the solution $X$ exhibits continuity and/or\\ndifferentiability with respect to the parameter $\\\\zeta$ in the\\n$\\\\mathscr{L}$-sense, as defined by Krylov. As an application, we present an existence-and-uniqueness result for a class\\nof rough partial differential equations (rough PDEs) of the form $$-du_t = L_t\\nu_t dt + \\\\Gamma_t u_t d\\\\mathbf{W}_t, \\\\quad u_T =g.$$ We show that the solution\\nadmits a Feynman--Kac type representation in terms of the solution of an\\nappropriate rough SDE, where the initial time and the initial state play the\\nrole of parameters.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将克雷洛夫关于依赖参数的随机微分方程的理论推广到粗糙随机微分方程(粗糙 SDEs)的框架中,粗糙 SDEs 最初是由 Friz、Hocquet 和 L\^e 提出的。我们考虑一个形式为 $$ dX_t^\zeta = b_t(\zeta,X_t^\zeta)\ dt + \sigma_t(\zeta,X_t^\zeta) \ dB_t + \beta_t (\zeta. X_t^\zeta)\ dt 的随机方程、X_t^\zeta)d\mathbf{W}_t, $$ 其中 $\zeta$ 是一个参数,$B$ 表示布朗运动,$\mathbf{W}$ 是一个确定的 H\"older rough path。我们研究了在克雷洛夫定义的$mathscr{L}$意义上,解$X$相对于参数$\zeta$表现出连续性和/或无差异的条件。作为应用,我们提出了一类形式为 $$-du_t = L_tu_t dt + \Gamma_t u_t d\mathbf{W}_t, \quad u_T =g.$$ 的粗糙偏微分方程(粗糙 PDEs)的存在性和唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter dependent rough SDEs with applications to rough PDEs
In this paper we generalize Krylov's theory on parameter-dependent stochastic differential equations to the framework of rough stochastic differential equations (rough SDEs), as initially introduced by Friz, Hocquet and L\^e. We consider a stochastic equation of the form $$ dX_t^\zeta = b_t(\zeta,X_t^\zeta) \ dt + \sigma_t(\zeta,X_t^\zeta) \ dB_t + \beta_t (\zeta,X_t^\zeta) d\mathbf{W}_t,$$ where $\zeta$ is a parameter, $B$ denotes a Brownian motion and $\mathbf{W}$ is a deterministic H\"older rough path. We investigate the conditions under which the solution $X$ exhibits continuity and/or differentiability with respect to the parameter $\zeta$ in the $\mathscr{L}$-sense, as defined by Krylov. As an application, we present an existence-and-uniqueness result for a class of rough partial differential equations (rough PDEs) of the form $$-du_t = L_t u_t dt + \Gamma_t u_t d\mathbf{W}_t, \quad u_T =g.$$ We show that the solution admits a Feynman--Kac type representation in terms of the solution of an appropriate rough SDE, where the initial time and the initial state play the role of parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信