具有局部阻尼的随机强迫非线性波方程的局部大偏差

Yuxuan Chen, Ziyu Liu, Shengquan Xiang, Zhifei Zhang
{"title":"具有局部阻尼的随机强迫非线性波方程的局部大偏差","authors":"Yuxuan Chen, Ziyu Liu, Shengquan Xiang, Zhifei Zhang","doi":"arxiv-2409.11717","DOIUrl":null,"url":null,"abstract":"We study the large deviation principle (LDP) for locally damped nonlinear\nwave equations perturbed by a bounded noise. When the noise is sufficiently\nnon-degenerate, we establish the LDP for empirical distributions with lower\nbound of a local type. The primary challenge is the lack of compactness due to\nthe absence of smoothing effect. This is overcome by exploiting the asymptotic\ncompactness for the dynamics of waves, introducing the concept of asymptotic\nexponential tightness for random measures, and establishing a new LDP approach\nfor random dynamical systems.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local large deviations for randomly forced nonlinear wave equations with localized damping\",\"authors\":\"Yuxuan Chen, Ziyu Liu, Shengquan Xiang, Zhifei Zhang\",\"doi\":\"arxiv-2409.11717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the large deviation principle (LDP) for locally damped nonlinear\\nwave equations perturbed by a bounded noise. When the noise is sufficiently\\nnon-degenerate, we establish the LDP for empirical distributions with lower\\nbound of a local type. The primary challenge is the lack of compactness due to\\nthe absence of smoothing effect. This is overcome by exploiting the asymptotic\\ncompactness for the dynamics of waves, introducing the concept of asymptotic\\nexponential tightness for random measures, and establishing a new LDP approach\\nfor random dynamical systems.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了受有界噪声扰动的局部阻尼非线性波方程的大偏差原理(LDP)。当噪声足够非退化时,我们建立了具有局部类型下限的经验分布的大偏差原理。主要的挑战是由于没有平滑效应而缺乏紧凑性。我们利用波动力学的渐近紧凑性,引入随机度量的渐近指数紧密性概念,建立了随机动力系统的新 LDP 方法,从而克服了这一难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local large deviations for randomly forced nonlinear wave equations with localized damping
We study the large deviation principle (LDP) for locally damped nonlinear wave equations perturbed by a bounded noise. When the noise is sufficiently non-degenerate, we establish the LDP for empirical distributions with lower bound of a local type. The primary challenge is the lack of compactness due to the absence of smoothing effect. This is overcome by exploiting the asymptotic compactness for the dynamics of waves, introducing the concept of asymptotic exponential tightness for random measures, and establishing a new LDP approach for random dynamical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信