具有次指数索赔的多维风险模型的渐近有限时间毁灭概率

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Dawei Lu, Ting Li, Meng Yuan, Xinmei Shen
{"title":"具有次指数索赔的多维风险模型的渐近有限时间毁灭概率","authors":"Dawei Lu, Ting Li, Meng Yuan, Xinmei Shen","doi":"10.1007/s11009-024-10103-z","DOIUrl":null,"url":null,"abstract":"<p>This paper considers a multidimensional risk model with cádlág investment return processes, in which there exists some dependence structure among claims and claim-arrival time. Specifically, if claims follow the subexponential distribution or the regular variation distribution, we obtain some precise asymptotic estimates for the finite-time ruin probabilities. In addition, some numerical simulations are presented to test the performance of the theoretical results.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims\",\"authors\":\"Dawei Lu, Ting Li, Meng Yuan, Xinmei Shen\",\"doi\":\"10.1007/s11009-024-10103-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper considers a multidimensional risk model with cádlág investment return processes, in which there exists some dependence structure among claims and claim-arrival time. Specifically, if claims follow the subexponential distribution or the regular variation distribution, we obtain some precise asymptotic estimates for the finite-time ruin probabilities. In addition, some numerical simulations are presented to test the performance of the theoretical results.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10103-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10103-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑的是一个具有 cádlág 投资收益过程的多维风险模型,在该模型中,索赔和索赔到达时间之间存在某种依赖结构。具体来说,如果索赔遵循亚指数分布或正则变异分布,我们将得到有限时间毁损概率的一些精确渐近估计值。此外,我们还提出了一些数值模拟来检验理论结果的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims

Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims

This paper considers a multidimensional risk model with cádlág investment return processes, in which there exists some dependence structure among claims and claim-arrival time. Specifically, if claims follow the subexponential distribution or the regular variation distribution, we obtain some precise asymptotic estimates for the finite-time ruin probabilities. In addition, some numerical simulations are presented to test the performance of the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信