{"title":"二次判别分析的巴塔查里亚型条件误差约束","authors":"Ata Kabán, Efstratios Palias","doi":"10.1007/s11009-024-10105-x","DOIUrl":null,"url":null,"abstract":"<p>We give an upper bound on the <i>conditional error</i> of Quadratic Discriminant Analysis (QDA), conditioned on parameter estimates. In the case of maximum likelihood estimation (MLE), our bound recovers the well-known Chernoff and Bhattacharyya bounds in the infinite sample limit. We perform an empirical assessment of the behaviour of our bound in a finite sample MLE setting, demonstrating good agreement with the <i>out-of-sample error</i>, in contrast with the simpler but uninformative <i>estimated error</i>, which exhibits unnatural behaviour with respect to the sample size. Furthermore, our conditional error bound is applicable whenever the QDA decision function employs parameter estimates that differ from the true parameters, including regularised QDA.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis\",\"authors\":\"Ata Kabán, Efstratios Palias\",\"doi\":\"10.1007/s11009-024-10105-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an upper bound on the <i>conditional error</i> of Quadratic Discriminant Analysis (QDA), conditioned on parameter estimates. In the case of maximum likelihood estimation (MLE), our bound recovers the well-known Chernoff and Bhattacharyya bounds in the infinite sample limit. We perform an empirical assessment of the behaviour of our bound in a finite sample MLE setting, demonstrating good agreement with the <i>out-of-sample error</i>, in contrast with the simpler but uninformative <i>estimated error</i>, which exhibits unnatural behaviour with respect to the sample size. Furthermore, our conditional error bound is applicable whenever the QDA decision function employs parameter estimates that differ from the true parameters, including regularised QDA.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10105-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10105-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis
We give an upper bound on the conditional error of Quadratic Discriminant Analysis (QDA), conditioned on parameter estimates. In the case of maximum likelihood estimation (MLE), our bound recovers the well-known Chernoff and Bhattacharyya bounds in the infinite sample limit. We perform an empirical assessment of the behaviour of our bound in a finite sample MLE setting, demonstrating good agreement with the out-of-sample error, in contrast with the simpler but uninformative estimated error, which exhibits unnatural behaviour with respect to the sample size. Furthermore, our conditional error bound is applicable whenever the QDA decision function employs parameter estimates that differ from the true parameters, including regularised QDA.
期刊介绍:
Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics.
The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests:
-Algorithms-
Approximations-
Asymptotic Approximations & Expansions-
Combinatorial & Geometric Probability-
Communication Networks-
Extreme Value Theory-
Finance-
Image Analysis-
Inequalities-
Information Theory-
Mathematical Physics-
Molecular Biology-
Monte Carlo Methods-
Order Statistics-
Queuing Theory-
Reliability Theory-
Stochastic Processes