二次判别分析的巴塔查里亚型条件误差约束

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Ata Kabán, Efstratios Palias
{"title":"二次判别分析的巴塔查里亚型条件误差约束","authors":"Ata Kabán, Efstratios Palias","doi":"10.1007/s11009-024-10105-x","DOIUrl":null,"url":null,"abstract":"<p>We give an upper bound on the <i>conditional error</i> of Quadratic Discriminant Analysis (QDA), conditioned on parameter estimates. In the case of maximum likelihood estimation (MLE), our bound recovers the well-known Chernoff and Bhattacharyya bounds in the infinite sample limit. We perform an empirical assessment of the behaviour of our bound in a finite sample MLE setting, demonstrating good agreement with the <i>out-of-sample error</i>, in contrast with the simpler but uninformative <i>estimated error</i>, which exhibits unnatural behaviour with respect to the sample size. Furthermore, our conditional error bound is applicable whenever the QDA decision function employs parameter estimates that differ from the true parameters, including regularised QDA.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"188 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis\",\"authors\":\"Ata Kabán, Efstratios Palias\",\"doi\":\"10.1007/s11009-024-10105-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an upper bound on the <i>conditional error</i> of Quadratic Discriminant Analysis (QDA), conditioned on parameter estimates. In the case of maximum likelihood estimation (MLE), our bound recovers the well-known Chernoff and Bhattacharyya bounds in the infinite sample limit. We perform an empirical assessment of the behaviour of our bound in a finite sample MLE setting, demonstrating good agreement with the <i>out-of-sample error</i>, in contrast with the simpler but uninformative <i>estimated error</i>, which exhibits unnatural behaviour with respect to the sample size. Furthermore, our conditional error bound is applicable whenever the QDA decision function employs parameter estimates that differ from the true parameters, including regularised QDA.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10105-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10105-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了以参数估计为条件的二次判别分析(QDA)条件误差上限。在最大似然估计(MLE)情况下,我们的界值恢复了无限样本极限下著名的切尔诺夫界值和巴塔查里亚界值。我们对有限样本 MLE 环境下的约束行为进行了实证评估,结果表明我们的约束与样本外误差非常吻合,而与之相反的是,估计误差虽然简单,但信息量却很小,它在样本量方面表现出不自然的行为。此外,只要 QDA 决策函数采用的参数估计与真实参数不同,包括正则化 QDA,我们的条件误差约束都适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis

A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis

We give an upper bound on the conditional error of Quadratic Discriminant Analysis (QDA), conditioned on parameter estimates. In the case of maximum likelihood estimation (MLE), our bound recovers the well-known Chernoff and Bhattacharyya bounds in the infinite sample limit. We perform an empirical assessment of the behaviour of our bound in a finite sample MLE setting, demonstrating good agreement with the out-of-sample error, in contrast with the simpler but uninformative estimated error, which exhibits unnatural behaviour with respect to the sample size. Furthermore, our conditional error bound is applicable whenever the QDA decision function employs parameter estimates that differ from the true parameters, including regularised QDA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信