利用 KNN-SINDy 混合模型加强空气质量监测网络中的 PM2.5 数据推算和预测

Yohan Choi, Boaz Choi, Jachin Choi
{"title":"利用 KNN-SINDy 混合模型加强空气质量监测网络中的 PM2.5 数据推算和预测","authors":"Yohan Choi, Boaz Choi, Jachin Choi","doi":"arxiv-2409.11640","DOIUrl":null,"url":null,"abstract":"Air pollution, particularly particulate matter (PM2.5), poses significant\nrisks to public health and the environment, necessitating accurate prediction\nand continuous monitoring for effective air quality management. However, air\nquality monitoring (AQM) data often suffer from missing records due to various\ntechnical difficulties. This study explores the application of Sparse\nIdentification of Nonlinear Dynamics (SINDy) for imputing missing PM2.5 data by\npredicting, using training data from 2016, and comparing its performance with\nthe established Soft Impute (SI) and K-Nearest Neighbors (KNN) methods.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing PM2.5 Data Imputation and Prediction in Air Quality Monitoring Networks Using a KNN-SINDy Hybrid Model\",\"authors\":\"Yohan Choi, Boaz Choi, Jachin Choi\",\"doi\":\"arxiv-2409.11640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution, particularly particulate matter (PM2.5), poses significant\\nrisks to public health and the environment, necessitating accurate prediction\\nand continuous monitoring for effective air quality management. However, air\\nquality monitoring (AQM) data often suffer from missing records due to various\\ntechnical difficulties. This study explores the application of Sparse\\nIdentification of Nonlinear Dynamics (SINDy) for imputing missing PM2.5 data by\\npredicting, using training data from 2016, and comparing its performance with\\nthe established Soft Impute (SI) and K-Nearest Neighbors (KNN) methods.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空气污染,尤其是颗粒物(PM2.5),对公众健康和环境构成了重大风险,需要准确预测和持续监测,以进行有效的空气质量管理。然而,由于各种技术上的困难,空气质量监测(AQM)数据往往存在记录缺失的问题。本研究利用 2016 年的训练数据,探索应用非线性动力学稀疏识别(SparseIdentification of Nonlinear Dynamics,SINDy)对缺失的 PM2.5 数据进行预测归因,并将其性能与已有的软归因(Soft Impute,SI)和 K-近邻(K-Nearest Neighbors,KNN)方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing PM2.5 Data Imputation and Prediction in Air Quality Monitoring Networks Using a KNN-SINDy Hybrid Model
Air pollution, particularly particulate matter (PM2.5), poses significant risks to public health and the environment, necessitating accurate prediction and continuous monitoring for effective air quality management. However, air quality monitoring (AQM) data often suffer from missing records due to various technical difficulties. This study explores the application of Sparse Identification of Nonlinear Dynamics (SINDy) for imputing missing PM2.5 data by predicting, using training data from 2016, and comparing its performance with the established Soft Impute (SI) and K-Nearest Neighbors (KNN) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信