论分布式转变下分散深度学习中相似度指标的影响

Edvin Listo Zec, Tom Hagander, Eric Ihre-Thomason, Sarunas Girdzijauskas
{"title":"论分布式转变下分散深度学习中相似度指标的影响","authors":"Edvin Listo Zec, Tom Hagander, Eric Ihre-Thomason, Sarunas Girdzijauskas","doi":"arxiv-2409.10720","DOIUrl":null,"url":null,"abstract":"Decentralized Learning (DL) enables privacy-preserving collaboration among\norganizations or users to enhance the performance of local deep learning\nmodels. However, model aggregation becomes challenging when client data is\nheterogeneous, and identifying compatible collaborators without direct data\nexchange remains a pressing issue. In this paper, we investigate the\neffectiveness of various similarity metrics in DL for identifying peers for\nmodel merging, conducting an empirical analysis across multiple datasets with\ndistribution shifts. Our research provides insights into the performance of\nthese metrics, examining their role in facilitating effective collaboration. By\nexploring the strengths and limitations of these metrics, we contribute to the\ndevelopment of robust DL methods.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the effects of similarity metrics in decentralized deep learning under distributional shift\",\"authors\":\"Edvin Listo Zec, Tom Hagander, Eric Ihre-Thomason, Sarunas Girdzijauskas\",\"doi\":\"arxiv-2409.10720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decentralized Learning (DL) enables privacy-preserving collaboration among\\norganizations or users to enhance the performance of local deep learning\\nmodels. However, model aggregation becomes challenging when client data is\\nheterogeneous, and identifying compatible collaborators without direct data\\nexchange remains a pressing issue. In this paper, we investigate the\\neffectiveness of various similarity metrics in DL for identifying peers for\\nmodel merging, conducting an empirical analysis across multiple datasets with\\ndistribution shifts. Our research provides insights into the performance of\\nthese metrics, examining their role in facilitating effective collaboration. By\\nexploring the strengths and limitations of these metrics, we contribute to the\\ndevelopment of robust DL methods.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

去中心化学习(DL)可实现组织或用户之间的隐私保护协作,从而提高本地深度学习模型的性能。然而,当客户端数据异构时,模型聚合就变得具有挑战性,而且在没有直接数据交换的情况下识别兼容的合作者仍然是一个亟待解决的问题。在本文中,我们研究了 DL 中各种相似性指标在识别同行以进行模型合并方面的有效性,并在多个数据集撤回分布变化的情况下进行了实证分析。我们的研究为这些指标的性能提供了见解,考察了它们在促进有效协作中的作用。通过探索这些指标的优势和局限性,我们为开发稳健的 DL 方法做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the effects of similarity metrics in decentralized deep learning under distributional shift
Decentralized Learning (DL) enables privacy-preserving collaboration among organizations or users to enhance the performance of local deep learning models. However, model aggregation becomes challenging when client data is heterogeneous, and identifying compatible collaborators without direct data exchange remains a pressing issue. In this paper, we investigate the effectiveness of various similarity metrics in DL for identifying peers for model merging, conducting an empirical analysis across multiple datasets with distribution shifts. Our research provides insights into the performance of these metrics, examining their role in facilitating effective collaboration. By exploring the strengths and limitations of these metrics, we contribute to the development of robust DL methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信