相对表示法:拓扑和几何视角

Alejandro García-Castellanos, Giovanni Luca Marchetti, Danica Kragic, Martina Scolamiero
{"title":"相对表示法:拓扑和几何视角","authors":"Alejandro García-Castellanos, Giovanni Luca Marchetti, Danica Kragic, Martina Scolamiero","doi":"arxiv-2409.10967","DOIUrl":null,"url":null,"abstract":"Relative representations are an established approach to zero-shot model\nstitching, consisting of a non-trainable transformation of the latent space of\na deep neural network. Based on insights of topological and geometric nature,\nwe propose two improvements to relative representations. First, we introduce a\nnormalization procedure in the relative transformation, resulting in invariance\nto non-isotropic rescalings and permutations. The latter coincides with the\nsymmetries in parameter space induced by common activation functions. Second,\nwe propose to deploy topological densification when fine-tuning relative\nrepresentations, a topological regularization loss encouraging clustering\nwithin classes. We provide an empirical investigation on a natural language\ntask, where both the proposed variations yield improved performance on\nzero-shot model stitching.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Representations: Topological and Geometric Perspectives\",\"authors\":\"Alejandro García-Castellanos, Giovanni Luca Marchetti, Danica Kragic, Martina Scolamiero\",\"doi\":\"arxiv-2409.10967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relative representations are an established approach to zero-shot model\\nstitching, consisting of a non-trainable transformation of the latent space of\\na deep neural network. Based on insights of topological and geometric nature,\\nwe propose two improvements to relative representations. First, we introduce a\\nnormalization procedure in the relative transformation, resulting in invariance\\nto non-isotropic rescalings and permutations. The latter coincides with the\\nsymmetries in parameter space induced by common activation functions. Second,\\nwe propose to deploy topological densification when fine-tuning relative\\nrepresentations, a topological regularization loss encouraging clustering\\nwithin classes. We provide an empirical investigation on a natural language\\ntask, where both the proposed variations yield improved performance on\\nzero-shot model stitching.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相对表征是一种成熟的零镜头模型缝合方法,由深度神经网络潜空间的不可训练变换组成。基于拓扑和几何性质的见解,我们对相对表示法提出了两点改进。首先,我们在相对变换中引入了规范化程序,从而实现了对非各向异性重定标和排列的不变性。后者与共同激活函数引起的参数空间对称性相吻合。其次,我们建议在微调相对表示时采用拓扑致密化,这是一种拓扑正则化损失,鼓励在类内进行聚类。我们在一个自然语言任务中进行了实证研究,结果表明,这两种变体都提高了零拍模型拼接的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Representations: Topological and Geometric Perspectives
Relative representations are an established approach to zero-shot model stitching, consisting of a non-trainable transformation of the latent space of a deep neural network. Based on insights of topological and geometric nature, we propose two improvements to relative representations. First, we introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations. The latter coincides with the symmetries in parameter space induced by common activation functions. Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes. We provide an empirical investigation on a natural language task, where both the proposed variations yield improved performance on zero-shot model stitching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信