通过模型排序选择模型

Mohammad Ali Hajiani, Babak Seyfe
{"title":"通过模型排序选择模型","authors":"Mohammad Ali Hajiani, Babak Seyfe","doi":"arxiv-2409.09674","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to select the best model of the data. Based on\nthe exclusive properties of the nested models, we find the most parsimonious\nmodel containing the risk minimizer predictor. We prove the existence of\nprobable approximately correct (PAC) bounds on the difference of the minimum\nempirical risk of two successive nested models, called successive empirical\nexcess risk (SEER). Based on these bounds, we propose a model order selection\nmethod called nested empirical risk (NER). By the sorted NER (S-NER) method to\nsort the models intelligently, the minimum risk decreases. We construct a test\nthat predicts whether expanding the model decreases the minimum risk or not.\nWith a high probability, the NER and S-NER choose the true model order and the\nmost parsimonious model containing the risk minimizer predictor, respectively.\nWe use S-NER model selection in the linear regression and show that, the S-NER\nmethod without any prior information can outperform the accuracy of feature\nsorting algorithms like orthogonal matching pursuit (OMP) that aided with prior\nknowledge of the true model order. Also, in the UCR data set, the NER method\nreduces the complexity of the classification of UCR datasets dramatically, with\na negligible loss of accuracy.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Selection Through Model Sorting\",\"authors\":\"Mohammad Ali Hajiani, Babak Seyfe\",\"doi\":\"arxiv-2409.09674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach to select the best model of the data. Based on\\nthe exclusive properties of the nested models, we find the most parsimonious\\nmodel containing the risk minimizer predictor. We prove the existence of\\nprobable approximately correct (PAC) bounds on the difference of the minimum\\nempirical risk of two successive nested models, called successive empirical\\nexcess risk (SEER). Based on these bounds, we propose a model order selection\\nmethod called nested empirical risk (NER). By the sorted NER (S-NER) method to\\nsort the models intelligently, the minimum risk decreases. We construct a test\\nthat predicts whether expanding the model decreases the minimum risk or not.\\nWith a high probability, the NER and S-NER choose the true model order and the\\nmost parsimonious model containing the risk minimizer predictor, respectively.\\nWe use S-NER model selection in the linear regression and show that, the S-NER\\nmethod without any prior information can outperform the accuracy of feature\\nsorting algorithms like orthogonal matching pursuit (OMP) that aided with prior\\nknowledge of the true model order. Also, in the UCR data set, the NER method\\nreduces the complexity of the classification of UCR datasets dramatically, with\\na negligible loss of accuracy.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种选择最佳数据模型的新方法。基于嵌套模型的排他性,我们找到了包含风险最小化预测因子的最简洁模型。我们证明了两个连续嵌套模型的最小经验风险之差存在可能近似正确(PAC)的边界,称为连续经验超额风险(SEER)。基于这些界限,我们提出了一种称为嵌套经验风险(NER)的模型顺序选择方法。通过排序 NER(S-NER)方法对模型进行智能排序,可以降低最小风险。我们在线性回归中使用了 S-NER 模型选择方法,结果表明,在没有任何先验信息的情况下,S-NER 方法的准确性优于正交匹配追寻(OMP)等先验了解真实模型顺序的特征排序算法。此外,在 UCR 数据集中,NER 方法大大降低了 UCR 数据集分类的复杂性,其准确性损失可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Selection Through Model Sorting
We propose a novel approach to select the best model of the data. Based on the exclusive properties of the nested models, we find the most parsimonious model containing the risk minimizer predictor. We prove the existence of probable approximately correct (PAC) bounds on the difference of the minimum empirical risk of two successive nested models, called successive empirical excess risk (SEER). Based on these bounds, we propose a model order selection method called nested empirical risk (NER). By the sorted NER (S-NER) method to sort the models intelligently, the minimum risk decreases. We construct a test that predicts whether expanding the model decreases the minimum risk or not. With a high probability, the NER and S-NER choose the true model order and the most parsimonious model containing the risk minimizer predictor, respectively. We use S-NER model selection in the linear regression and show that, the S-NER method without any prior information can outperform the accuracy of feature sorting algorithms like orthogonal matching pursuit (OMP) that aided with prior knowledge of the true model order. Also, in the UCR data set, the NER method reduces the complexity of the classification of UCR datasets dramatically, with a negligible loss of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信