基于熵的水平集可视化不确定性建模测试与开发框架

Robert Sisneros, Tushar M. Athawale, David Pugmire, Kenneth Moreland
{"title":"基于熵的水平集可视化不确定性建模测试与开发框架","authors":"Robert Sisneros, Tushar M. Athawale, David Pugmire, Kenneth Moreland","doi":"arxiv-2409.08445","DOIUrl":null,"url":null,"abstract":"We present a simple comparative framework for testing and developing\nuncertainty modeling in uncertain marching cubes implementations. The selection\nof a model to represent the probability distribution of uncertain values\ndirectly influences the memory use, run time, and accuracy of an uncertainty\nvisualization algorithm. We use an entropy calculation directly on ensemble\ndata to establish an expected result and then compare the entropy from various\nprobability models, including uniform, Gaussian, histogram, and quantile\nmodels. Our results verify that models matching the distribution of the\nensemble indeed match the entropy. We further show that fewer bins in\nnonparametric histogram models are more effective whereas large numbers of bins\nin quantile models approach data accuracy.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations\",\"authors\":\"Robert Sisneros, Tushar M. Athawale, David Pugmire, Kenneth Moreland\",\"doi\":\"arxiv-2409.08445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple comparative framework for testing and developing\\nuncertainty modeling in uncertain marching cubes implementations. The selection\\nof a model to represent the probability distribution of uncertain values\\ndirectly influences the memory use, run time, and accuracy of an uncertainty\\nvisualization algorithm. We use an entropy calculation directly on ensemble\\ndata to establish an expected result and then compare the entropy from various\\nprobability models, including uniform, Gaussian, histogram, and quantile\\nmodels. Our results verify that models matching the distribution of the\\nensemble indeed match the entropy. We further show that fewer bins in\\nnonparametric histogram models are more effective whereas large numbers of bins\\nin quantile models approach data accuracy.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个简单的比较框架,用于测试和开发不确定行进立方体实现中的不确定建模。选择何种模型来表示不确定值的概率分布直接影响不确定可视化算法的内存使用、运行时间和准确性。我们在集合数据上直接使用熵计算来确定预期结果,然后比较各种概率模型的熵,包括均匀、高斯、直方图和量子模型。我们的结果验证了与集合分布相匹配的模型确实与熵相匹配。我们进一步证明,非参数直方图模型中较少的分位数更有效,而量化模型中较多的分位数则接近数据准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations
We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信