随机匪帮中的方差依赖回退的批量合奏

Asaf CasselSchool of Computer Science, Tel Aviv University, Orin LevySchool of Computer Science, Tel Aviv University, Yishay MansourSchool of Computer Science, Tel Aviv UniversityGoogle Research, Tel Aviv
{"title":"随机匪帮中的方差依赖回退的批量合奏","authors":"Asaf CasselSchool of Computer Science, Tel Aviv University, Orin LevySchool of Computer Science, Tel Aviv University, Yishay MansourSchool of Computer Science, Tel Aviv UniversityGoogle Research, Tel Aviv","doi":"arxiv-2409.08570","DOIUrl":null,"url":null,"abstract":"Efficiently trading off exploration and exploitation is one of the key\nchallenges in online Reinforcement Learning (RL). Most works achieve this by\ncarefully estimating the model uncertainty and following the so-called\noptimistic model. Inspired by practical ensemble methods, in this work we\npropose a simple and novel batch ensemble scheme that provably achieves\nnear-optimal regret for stochastic Multi-Armed Bandits (MAB). Crucially, our\nalgorithm has just a single parameter, namely the number of batches, and its\nvalue does not depend on distributional properties such as the scale and\nvariance of the losses. We complement our theoretical results by demonstrating\nthe effectiveness of our algorithm on synthetic benchmarks.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"177 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Batch Ensemble for Variance Dependent Regret in Stochastic Bandits\",\"authors\":\"Asaf CasselSchool of Computer Science, Tel Aviv University, Orin LevySchool of Computer Science, Tel Aviv University, Yishay MansourSchool of Computer Science, Tel Aviv UniversityGoogle Research, Tel Aviv\",\"doi\":\"arxiv-2409.08570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently trading off exploration and exploitation is one of the key\\nchallenges in online Reinforcement Learning (RL). Most works achieve this by\\ncarefully estimating the model uncertainty and following the so-called\\noptimistic model. Inspired by practical ensemble methods, in this work we\\npropose a simple and novel batch ensemble scheme that provably achieves\\nnear-optimal regret for stochastic Multi-Armed Bandits (MAB). Crucially, our\\nalgorithm has just a single parameter, namely the number of batches, and its\\nvalue does not depend on distributional properties such as the scale and\\nvariance of the losses. We complement our theoretical results by demonstrating\\nthe effectiveness of our algorithm on synthetic benchmarks.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效地权衡探索和利用是在线强化学习(RL)的关键挑战之一。大多数研究都是通过谨慎估计模型的不确定性和遵循所谓的乐观模型来实现这一目标的。受实际合集方法的启发,我们在这项工作中提出了一种简单而新颖的批量合集方案,该方案可证明随机多臂强盗(MAB)能够实现接近最优的遗憾。最重要的是,我们的算法只有一个参数,即批次数,其值不依赖于损失的规模和方差等分布特性。我们在合成基准上证明了算法的有效性,从而补充了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Batch Ensemble for Variance Dependent Regret in Stochastic Bandits
Efficiently trading off exploration and exploitation is one of the key challenges in online Reinforcement Learning (RL). Most works achieve this by carefully estimating the model uncertainty and following the so-called optimistic model. Inspired by practical ensemble methods, in this work we propose a simple and novel batch ensemble scheme that provably achieves near-optimal regret for stochastic Multi-Armed Bandits (MAB). Crucially, our algorithm has just a single parameter, namely the number of batches, and its value does not depend on distributional properties such as the scale and variance of the losses. We complement our theoretical results by demonstrating the effectiveness of our algorithm on synthetic benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信