临界点上普遍不发散的格吕奈森参数

Samuel M. Soares, Lucas Squillante, Henrique S. Lima, Constantino Tsallis, Mariano de Souza
{"title":"临界点上普遍不发散的格吕奈森参数","authors":"Samuel M. Soares, Lucas Squillante, Henrique S. Lima, Constantino Tsallis, Mariano de Souza","doi":"arxiv-2409.11086","DOIUrl":null,"url":null,"abstract":"According to Boltzmann-Gibbs (BG) statistical mechanics, the thermodynamic\nresponse, such as the isothermal susceptibility, at critical points (CPs)\npresents a divergent-like behavior. An appropriate parameter to probe both\nclassical and quantum CPs is the so-called Gr\\\"uneisen ratio $\\Gamma$.\nMotivated by the results reported in Phys. Rev. B $\\textbf{108}$, L140403\n(2023), we extend the quantum version of $\\Gamma$ to the non-additive\n$q$-entropy $S_q$. Our findings indicate that using $S_q$ at the unique value\nof $q$ restoring the extensivity of the entropy, $\\Gamma$ is universally\nnon-diverging at CPs. We unprecedentedly introduce $\\Gamma$ in terms of $S_q$,\nbeing BG recovered for $q \\rightarrow 1$. We thus solve a long-standing problem\nrelated to the $\\textit{illusory}$ diverging susceptibilities at CPs.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universally non-diverging Grüneisen parameter at critical points\",\"authors\":\"Samuel M. Soares, Lucas Squillante, Henrique S. Lima, Constantino Tsallis, Mariano de Souza\",\"doi\":\"arxiv-2409.11086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to Boltzmann-Gibbs (BG) statistical mechanics, the thermodynamic\\nresponse, such as the isothermal susceptibility, at critical points (CPs)\\npresents a divergent-like behavior. An appropriate parameter to probe both\\nclassical and quantum CPs is the so-called Gr\\\\\\\"uneisen ratio $\\\\Gamma$.\\nMotivated by the results reported in Phys. Rev. B $\\\\textbf{108}$, L140403\\n(2023), we extend the quantum version of $\\\\Gamma$ to the non-additive\\n$q$-entropy $S_q$. Our findings indicate that using $S_q$ at the unique value\\nof $q$ restoring the extensivity of the entropy, $\\\\Gamma$ is universally\\nnon-diverging at CPs. We unprecedentedly introduce $\\\\Gamma$ in terms of $S_q$,\\nbeing BG recovered for $q \\\\rightarrow 1$. We thus solve a long-standing problem\\nrelated to the $\\\\textit{illusory}$ diverging susceptibilities at CPs.\",\"PeriodicalId\":501171,\"journal\":{\"name\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据玻尔兹曼-吉布斯(BG)统计力学,临界点(CPs)的热力学响应,如等温感度,呈现出类似发散的行为。受《物理评论 B》(Phys. Rev. B $\textbf{108}$, L140403(2023))上报告的结果的启发,我们将量子版的 $\Gamma$ 扩展到了非加性的 q$-熵 $S_q$。我们的研究结果表明,在恢复熵的扩展性的唯一q$值上使用$S_q$,$\Gamma$在CP上是普遍不发散的。我们史无前例地以$S_q$引入了$\Gamma$,并在$q \rightarrow 1$时得到了BG恢复。因此,我们解决了一个长期存在的与CP处$textit{illusory}$发散敏感性有关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universally non-diverging Grüneisen parameter at critical points
According to Boltzmann-Gibbs (BG) statistical mechanics, the thermodynamic response, such as the isothermal susceptibility, at critical points (CPs) presents a divergent-like behavior. An appropriate parameter to probe both classical and quantum CPs is the so-called Gr\"uneisen ratio $\Gamma$. Motivated by the results reported in Phys. Rev. B $\textbf{108}$, L140403 (2023), we extend the quantum version of $\Gamma$ to the non-additive $q$-entropy $S_q$. Our findings indicate that using $S_q$ at the unique value of $q$ restoring the extensivity of the entropy, $\Gamma$ is universally non-diverging at CPs. We unprecedentedly introduce $\Gamma$ in terms of $S_q$, being BG recovered for $q \rightarrow 1$. We thus solve a long-standing problem related to the $\textit{illusory}$ diverging susceptibilities at CPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信