Samuel M. Soares, Lucas Squillante, Henrique S. Lima, Constantino Tsallis, Mariano de Souza
{"title":"临界点上普遍不发散的格吕奈森参数","authors":"Samuel M. Soares, Lucas Squillante, Henrique S. Lima, Constantino Tsallis, Mariano de Souza","doi":"arxiv-2409.11086","DOIUrl":null,"url":null,"abstract":"According to Boltzmann-Gibbs (BG) statistical mechanics, the thermodynamic\nresponse, such as the isothermal susceptibility, at critical points (CPs)\npresents a divergent-like behavior. An appropriate parameter to probe both\nclassical and quantum CPs is the so-called Gr\\\"uneisen ratio $\\Gamma$.\nMotivated by the results reported in Phys. Rev. B $\\textbf{108}$, L140403\n(2023), we extend the quantum version of $\\Gamma$ to the non-additive\n$q$-entropy $S_q$. Our findings indicate that using $S_q$ at the unique value\nof $q$ restoring the extensivity of the entropy, $\\Gamma$ is universally\nnon-diverging at CPs. We unprecedentedly introduce $\\Gamma$ in terms of $S_q$,\nbeing BG recovered for $q \\rightarrow 1$. We thus solve a long-standing problem\nrelated to the $\\textit{illusory}$ diverging susceptibilities at CPs.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universally non-diverging Grüneisen parameter at critical points\",\"authors\":\"Samuel M. Soares, Lucas Squillante, Henrique S. Lima, Constantino Tsallis, Mariano de Souza\",\"doi\":\"arxiv-2409.11086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to Boltzmann-Gibbs (BG) statistical mechanics, the thermodynamic\\nresponse, such as the isothermal susceptibility, at critical points (CPs)\\npresents a divergent-like behavior. An appropriate parameter to probe both\\nclassical and quantum CPs is the so-called Gr\\\\\\\"uneisen ratio $\\\\Gamma$.\\nMotivated by the results reported in Phys. Rev. B $\\\\textbf{108}$, L140403\\n(2023), we extend the quantum version of $\\\\Gamma$ to the non-additive\\n$q$-entropy $S_q$. Our findings indicate that using $S_q$ at the unique value\\nof $q$ restoring the extensivity of the entropy, $\\\\Gamma$ is universally\\nnon-diverging at CPs. We unprecedentedly introduce $\\\\Gamma$ in terms of $S_q$,\\nbeing BG recovered for $q \\\\rightarrow 1$. We thus solve a long-standing problem\\nrelated to the $\\\\textit{illusory}$ diverging susceptibilities at CPs.\",\"PeriodicalId\":501171,\"journal\":{\"name\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Universally non-diverging Grüneisen parameter at critical points
According to Boltzmann-Gibbs (BG) statistical mechanics, the thermodynamic
response, such as the isothermal susceptibility, at critical points (CPs)
presents a divergent-like behavior. An appropriate parameter to probe both
classical and quantum CPs is the so-called Gr\"uneisen ratio $\Gamma$.
Motivated by the results reported in Phys. Rev. B $\textbf{108}$, L140403
(2023), we extend the quantum version of $\Gamma$ to the non-additive
$q$-entropy $S_q$. Our findings indicate that using $S_q$ at the unique value
of $q$ restoring the extensivity of the entropy, $\Gamma$ is universally
non-diverging at CPs. We unprecedentedly introduce $\Gamma$ in terms of $S_q$,
being BG recovered for $q \rightarrow 1$. We thus solve a long-standing problem
related to the $\textit{illusory}$ diverging susceptibilities at CPs.