通过适当贝叶斯引导法进行聚类的贝叶斯方法:贝叶斯袋式聚类(BBC)算法

Federico Maria Quetti, Silvia Figini, Elena ballante
{"title":"通过适当贝叶斯引导法进行聚类的贝叶斯方法:贝叶斯袋式聚类(BBC)算法","authors":"Federico Maria Quetti, Silvia Figini, Elena ballante","doi":"arxiv-2409.08954","DOIUrl":null,"url":null,"abstract":"The paper presents a novel approach for unsupervised techniques in the field\nof clustering. A new method is proposed to enhance existing literature models\nusing the proper Bayesian bootstrap to improve results in terms of robustness\nand interpretability. Our approach is organized in two steps: k-means\nclustering is used for prior elicitation, then proper Bayesian bootstrap is\napplied as resampling method in an ensemble clustering approach. Results are\nanalyzed introducing measures of uncertainty based on Shannon entropy. The\nproposal provides clear indication on the optimal number of clusters, as well\nas a better representation of the clustered data. Empirical results are\nprovided on simulated data showing the methodological and empirical advances\nobtained.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Approach to Clustering via the Proper Bayesian Bootstrap: the Bayesian Bagged Clustering (BBC) algorithm\",\"authors\":\"Federico Maria Quetti, Silvia Figini, Elena ballante\",\"doi\":\"arxiv-2409.08954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a novel approach for unsupervised techniques in the field\\nof clustering. A new method is proposed to enhance existing literature models\\nusing the proper Bayesian bootstrap to improve results in terms of robustness\\nand interpretability. Our approach is organized in two steps: k-means\\nclustering is used for prior elicitation, then proper Bayesian bootstrap is\\napplied as resampling method in an ensemble clustering approach. Results are\\nanalyzed introducing measures of uncertainty based on Shannon entropy. The\\nproposal provides clear indication on the optimal number of clusters, as well\\nas a better representation of the clustered data. Empirical results are\\nprovided on simulated data showing the methodological and empirical advances\\nobtained.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了聚类领域无监督技术的一种新方法。本文提出了一种新方法,利用适当的贝叶斯引导法增强现有的文献模型,以提高结果的稳健性和可解释性。我们的方法分为两个步骤:首先使用 k-means 聚类进行先验激发,然后在集合聚类方法中应用适当的贝叶斯引导法作为重采样方法。结果分析引入了基于香农熵的不确定性度量。该建议明确指出了最佳聚类数量,并更好地表示了聚类数据。在模拟数据上提供的经验结果显示了所取得的方法和经验上的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Approach to Clustering via the Proper Bayesian Bootstrap: the Bayesian Bagged Clustering (BBC) algorithm
The paper presents a novel approach for unsupervised techniques in the field of clustering. A new method is proposed to enhance existing literature models using the proper Bayesian bootstrap to improve results in terms of robustness and interpretability. Our approach is organized in two steps: k-means clustering is used for prior elicitation, then proper Bayesian bootstrap is applied as resampling method in an ensemble clustering approach. Results are analyzed introducing measures of uncertainty based on Shannon entropy. The proposal provides clear indication on the optimal number of clusters, as well as a better representation of the clustered data. Empirical results are provided on simulated data showing the methodological and empirical advances obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信