BM$^2$:耦合薛定谔桥匹配

Stefano Peluchetti
{"title":"BM$^2$:耦合薛定谔桥匹配","authors":"Stefano Peluchetti","doi":"arxiv-2409.09376","DOIUrl":null,"url":null,"abstract":"A Schr\\\"{o}dinger bridge establishes a dynamic transport map between two\ntarget distributions via a reference process, simultaneously solving an\nassociated entropic optimal transport problem. We consider the setting where\nsamples from the target distributions are available, and the reference\ndiffusion process admits tractable dynamics. We thus introduce Coupled Bridge\nMatching (BM$^2$), a simple \\emph{non-iterative} approach for learning\nSchr\\\"{o}dinger bridges with neural networks. A preliminary theoretical\nanalysis of the convergence properties of BM$^2$ is carried out, supported by\nnumerical experiments that demonstrate the effectiveness of our proposal.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BM$^2$: Coupled Schrödinger Bridge Matching\",\"authors\":\"Stefano Peluchetti\",\"doi\":\"arxiv-2409.09376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Schr\\\\\\\"{o}dinger bridge establishes a dynamic transport map between two\\ntarget distributions via a reference process, simultaneously solving an\\nassociated entropic optimal transport problem. We consider the setting where\\nsamples from the target distributions are available, and the reference\\ndiffusion process admits tractable dynamics. We thus introduce Coupled Bridge\\nMatching (BM$^2$), a simple \\\\emph{non-iterative} approach for learning\\nSchr\\\\\\\"{o}dinger bridges with neural networks. A preliminary theoretical\\nanalysis of the convergence properties of BM$^2$ is carried out, supported by\\nnumerical experiments that demonstrate the effectiveness of our proposal.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

薛定谔桥通过参考过程在两个目标分布之间建立动态传输映射,同时求解相关的熵优化传输问题。我们考虑的情况是,目标分布的样本是可用的,并且参考扩散过程具有可控的动态性。因此,我们引入了耦合桥匹配(Coupled BridgeMatching,BM$^2$),这是一种利用神经网络学习施罗丁格桥的简单迭代方法。我们对 BM$^2$ 的收敛特性进行了初步的理论分析,并通过数值实验证明了我们建议的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BM$^2$: Coupled Schrödinger Bridge Matching
A Schr\"{o}dinger bridge establishes a dynamic transport map between two target distributions via a reference process, simultaneously solving an associated entropic optimal transport problem. We consider the setting where samples from the target distributions are available, and the reference diffusion process admits tractable dynamics. We thus introduce Coupled Bridge Matching (BM$^2$), a simple \emph{non-iterative} approach for learning Schr\"{o}dinger bridges with neural networks. A preliminary theoretical analysis of the convergence properties of BM$^2$ is carried out, supported by numerical experiments that demonstrate the effectiveness of our proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信