具有自旋轨道耦合和晶体场效应的磁性杂质系统的重正化群数值计算

Aitor Calvo-Fernández, María Blanco-Rey, Asier Eiguren
{"title":"具有自旋轨道耦合和晶体场效应的磁性杂质系统的重正化群数值计算","authors":"Aitor Calvo-Fernández, María Blanco-Rey, Asier Eiguren","doi":"arxiv-2409.12050","DOIUrl":null,"url":null,"abstract":"Exploiting symmetries in the numerical renormalization group (NRG) method\nsignificantly enhances performance by improving accuracy, increasing\ncomputational speed, and optimizing memory efficiency. Published codes focus on\ncontinuous rotations and unitary groups, which generally are not applicable to\nsystems with strong crystal-field effects. The PointGroupNRG code implements\nsymmetries related to discrete rotation groups, which are defined by the user\nin terms of Clebsch-Gordan coefficients, together with particle conservation\nand spin rotation symmetries. In this paper we present a new version of the\ncode that extends the available finite groups, previously limited to simply\nreducible point groups, in a way that all point and double groups become\naccessible. It also includes the full spin-orbital rotation group. Moreover, to\nimprove the code's flexibility for impurities with complex interactions, this\nnew version allows to choose between a standard Anderson Hamiltonian for the\nimpurity or, as another novel feature, an ionic model that requires only the\nspectrum and the impurity Lehmann amplitudes.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical renormalization group calculations for magnetic impurity systems with spin-orbit coupling and crystal-field effects\",\"authors\":\"Aitor Calvo-Fernández, María Blanco-Rey, Asier Eiguren\",\"doi\":\"arxiv-2409.12050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting symmetries in the numerical renormalization group (NRG) method\\nsignificantly enhances performance by improving accuracy, increasing\\ncomputational speed, and optimizing memory efficiency. Published codes focus on\\ncontinuous rotations and unitary groups, which generally are not applicable to\\nsystems with strong crystal-field effects. The PointGroupNRG code implements\\nsymmetries related to discrete rotation groups, which are defined by the user\\nin terms of Clebsch-Gordan coefficients, together with particle conservation\\nand spin rotation symmetries. In this paper we present a new version of the\\ncode that extends the available finite groups, previously limited to simply\\nreducible point groups, in a way that all point and double groups become\\naccessible. It also includes the full spin-orbital rotation group. Moreover, to\\nimprove the code's flexibility for impurities with complex interactions, this\\nnew version allows to choose between a standard Anderson Hamiltonian for the\\nimpurity or, as another novel feature, an ionic model that requires only the\\nspectrum and the impurity Lehmann amplitudes.\",\"PeriodicalId\":501171,\"journal\":{\"name\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用数值重正化群(NRG)方法中的对称性,可以通过提高精度、增加计算速度和优化内存效率来显著增强性能。已发布的代码侧重于连续旋转和单元群,通常不适用于具有强晶场效应的系统。PointGroupNRG 代码实现了与离散旋转群相关的对称性,这些对称性由用户根据克莱布什-哥尔丹系数以及粒子守恒和自旋旋转对称性来定义。在本文中,我们介绍了该代码的一个新版本,它扩展了可用的有限群,以前仅限于简单可简化的点群,现在可以访问所有的点群和双群。它还包括完整的自旋轨道旋转群。此外,为了提高代码在处理具有复杂相互作用的杂质时的灵活性,新版本允许在杂质的标准安德森哈密顿或作为另一个新特性的离子模型之间进行选择,后者只需要频谱和杂质的莱曼振幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical renormalization group calculations for magnetic impurity systems with spin-orbit coupling and crystal-field effects
Exploiting symmetries in the numerical renormalization group (NRG) method significantly enhances performance by improving accuracy, increasing computational speed, and optimizing memory efficiency. Published codes focus on continuous rotations and unitary groups, which generally are not applicable to systems with strong crystal-field effects. The PointGroupNRG code implements symmetries related to discrete rotation groups, which are defined by the user in terms of Clebsch-Gordan coefficients, together with particle conservation and spin rotation symmetries. In this paper we present a new version of the code that extends the available finite groups, previously limited to simply reducible point groups, in a way that all point and double groups become accessible. It also includes the full spin-orbital rotation group. Moreover, to improve the code's flexibility for impurities with complex interactions, this new version allows to choose between a standard Anderson Hamiltonian for the impurity or, as another novel feature, an ionic model that requires only the spectrum and the impurity Lehmann amplitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信