基于结构的药物设计的显式约束核级去噪扩散模型

Shengchao Liu, Divin Yan, Weitao Du, Weiyang Liu, Zhuoxinran Li, Hongyu Guo, Christian Borgs, Jennifer Chayes, Anima Anandkumar
{"title":"基于结构的药物设计的显式约束核级去噪扩散模型","authors":"Shengchao Liu, Divin Yan, Weitao Du, Weiyang Liu, Zhuoxinran Li, Hongyu Guo, Christian Borgs, Jennifer Chayes, Anima Anandkumar","doi":"arxiv-2409.10584","DOIUrl":null,"url":null,"abstract":"Artificial intelligence models have shown great potential in structure-based\ndrug design, generating ligands with high binding affinities. However, existing\nmodels have often overlooked a crucial physical constraint: atoms must maintain\na minimum pairwise distance to avoid separation violation, a phenomenon\ngoverned by the balance of attractive and repulsive forces. To mitigate such\nseparation violations, we propose NucleusDiff. It models the interactions\nbetween atomic nuclei and their surrounding electron clouds by enforcing the\ndistance constraint between the nuclei and manifolds. We quantitatively\nevaluate NucleusDiff using the CrossDocked2020 dataset and a COVID-19\ntherapeutic target, demonstrating that NucleusDiff reduces violation rate by up\nto 100.00% and enhances binding affinity by up to 22.16%, surpassing\nstate-of-the-art models for structure-based drug design. We also provide\nqualitative analysis through manifold sampling, visually confirming the\neffectiveness of NucleusDiff in reducing separation violations and improving\nbinding affinities.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design\",\"authors\":\"Shengchao Liu, Divin Yan, Weitao Du, Weiyang Liu, Zhuoxinran Li, Hongyu Guo, Christian Borgs, Jennifer Chayes, Anima Anandkumar\",\"doi\":\"arxiv-2409.10584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence models have shown great potential in structure-based\\ndrug design, generating ligands with high binding affinities. However, existing\\nmodels have often overlooked a crucial physical constraint: atoms must maintain\\na minimum pairwise distance to avoid separation violation, a phenomenon\\ngoverned by the balance of attractive and repulsive forces. To mitigate such\\nseparation violations, we propose NucleusDiff. It models the interactions\\nbetween atomic nuclei and their surrounding electron clouds by enforcing the\\ndistance constraint between the nuclei and manifolds. We quantitatively\\nevaluate NucleusDiff using the CrossDocked2020 dataset and a COVID-19\\ntherapeutic target, demonstrating that NucleusDiff reduces violation rate by up\\nto 100.00% and enhances binding affinity by up to 22.16%, surpassing\\nstate-of-the-art models for structure-based drug design. We also provide\\nqualitative analysis through manifold sampling, visually confirming the\\neffectiveness of NucleusDiff in reducing separation violations and improving\\nbinding affinities.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能模型在基于结构的药物设计中显示出巨大潜力,可以生成具有高结合亲和力的配体。然而,现有的模型往往忽略了一个重要的物理约束条件:原子必须保持最小的成对距离,以避免分离违规,这种现象由吸引力和排斥力的平衡决定。为了减轻这种分离违规现象,我们提出了 NucleusDiff 模型。它通过强制原子核和流形之间的距离约束来模拟原子核与其周围电子云之间的相互作用。我们使用 CrossDocked 2020 数据集和 COVID-19 治疗靶点对 NucleusDiff 进行了定量评估,结果表明 NucleusDiff 可降低高达 100.00% 的违规率,提高高达 22.16% 的结合亲和力,超越了基于结构的药物设计的最先进模型。我们还通过流形采样提供了定性分析,直观地证实了 NucleusDiff 在减少分离违规率和提高结合亲和力方面的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design
Artificial intelligence models have shown great potential in structure-based drug design, generating ligands with high binding affinities. However, existing models have often overlooked a crucial physical constraint: atoms must maintain a minimum pairwise distance to avoid separation violation, a phenomenon governed by the balance of attractive and repulsive forces. To mitigate such separation violations, we propose NucleusDiff. It models the interactions between atomic nuclei and their surrounding electron clouds by enforcing the distance constraint between the nuclei and manifolds. We quantitatively evaluate NucleusDiff using the CrossDocked2020 dataset and a COVID-19 therapeutic target, demonstrating that NucleusDiff reduces violation rate by up to 100.00% and enhances binding affinity by up to 22.16%, surpassing state-of-the-art models for structure-based drug design. We also provide qualitative analysis through manifold sampling, visually confirming the effectiveness of NucleusDiff in reducing separation violations and improving binding affinities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信