非化学计量溶液对 THF 水合物生长的影响:化学亲和性建模和可视化

Randeep Ravesh, Ayaj A Ansari, Sabyasachi Mohapatra, Pankaj Sharma, M K Das, P K Panigrahi
{"title":"非化学计量溶液对 THF 水合物生长的影响:化学亲和性建模和可视化","authors":"Randeep Ravesh, Ayaj A Ansari, Sabyasachi Mohapatra, Pankaj Sharma, M K Das, P K Panigrahi","doi":"10.1007/s12046-024-02602-z","DOIUrl":null,"url":null,"abstract":"<p>Tetrahydrofuran (THF) hydrate is a useful material for cold storage applications and an excellent substitute for simulating natural gas hydrates. THF also serves as a thermodynamic promoter for hydrate formation. The selection of suitable THF concentration in the aqueous solution remains a challenging task for the utilization of the THF hydrate. Present work focuses on the influence of non-stoichiometric solutions on THF hydrate growth. The THF hydrate was grown in polycrystalline form as a gross hydrate layer from the wall towards the center of a cylindrical reactor. Experiments were conducted at the three THF concentrations 19.06, 30, and 15 wt% at 276.15 K and atmospheric pressure. Transient imaging of the hydrate provided the hydrate thickness with time. Moreover, the chemical affinity model was used to analyze the hydrate formation kinetics. An increase in the concentration of the THF in bulk solution accelerated hydrate growth with time. We found that non-homogeneity in the THF hydrate front increased in the azimuthal direction if the concentration of THF in the THF-water solution deviated from stoichiometric concentration. A hypothesis was also proposed to explain the above observation. The non-homogeneity was qualitatively shown by binary images and mathematically quantified using the maximum to minimum hydrate thickness ratio. The chemical affinity model proved effective in describing hydrate growth kinetics.</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of non-stoichiometric solutions on the THF hydrate growth: chemical affinity modelling and visualization\",\"authors\":\"Randeep Ravesh, Ayaj A Ansari, Sabyasachi Mohapatra, Pankaj Sharma, M K Das, P K Panigrahi\",\"doi\":\"10.1007/s12046-024-02602-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tetrahydrofuran (THF) hydrate is a useful material for cold storage applications and an excellent substitute for simulating natural gas hydrates. THF also serves as a thermodynamic promoter for hydrate formation. The selection of suitable THF concentration in the aqueous solution remains a challenging task for the utilization of the THF hydrate. Present work focuses on the influence of non-stoichiometric solutions on THF hydrate growth. The THF hydrate was grown in polycrystalline form as a gross hydrate layer from the wall towards the center of a cylindrical reactor. Experiments were conducted at the three THF concentrations 19.06, 30, and 15 wt% at 276.15 K and atmospheric pressure. Transient imaging of the hydrate provided the hydrate thickness with time. Moreover, the chemical affinity model was used to analyze the hydrate formation kinetics. An increase in the concentration of the THF in bulk solution accelerated hydrate growth with time. We found that non-homogeneity in the THF hydrate front increased in the azimuthal direction if the concentration of THF in the THF-water solution deviated from stoichiometric concentration. A hypothesis was also proposed to explain the above observation. The non-homogeneity was qualitatively shown by binary images and mathematically quantified using the maximum to minimum hydrate thickness ratio. The chemical affinity model proved effective in describing hydrate growth kinetics.</p>\",\"PeriodicalId\":21498,\"journal\":{\"name\":\"Sādhanā\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sādhanā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12046-024-02602-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02602-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of non-stoichiometric solutions on the THF hydrate growth: chemical affinity modelling and visualization

Influence of non-stoichiometric solutions on the THF hydrate growth: chemical affinity modelling and visualization

Tetrahydrofuran (THF) hydrate is a useful material for cold storage applications and an excellent substitute for simulating natural gas hydrates. THF also serves as a thermodynamic promoter for hydrate formation. The selection of suitable THF concentration in the aqueous solution remains a challenging task for the utilization of the THF hydrate. Present work focuses on the influence of non-stoichiometric solutions on THF hydrate growth. The THF hydrate was grown in polycrystalline form as a gross hydrate layer from the wall towards the center of a cylindrical reactor. Experiments were conducted at the three THF concentrations 19.06, 30, and 15 wt% at 276.15 K and atmospheric pressure. Transient imaging of the hydrate provided the hydrate thickness with time. Moreover, the chemical affinity model was used to analyze the hydrate formation kinetics. An increase in the concentration of the THF in bulk solution accelerated hydrate growth with time. We found that non-homogeneity in the THF hydrate front increased in the azimuthal direction if the concentration of THF in the THF-water solution deviated from stoichiometric concentration. A hypothesis was also proposed to explain the above observation. The non-homogeneity was qualitatively shown by binary images and mathematically quantified using the maximum to minimum hydrate thickness ratio. The chemical affinity model proved effective in describing hydrate growth kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信