面向算子学习的高斯过程:用于计算力学的不确定性感知分辨率独立算子学习算法

Sawan Kumar, Rajdip Nayek, Souvik Chakraborty
{"title":"面向算子学习的高斯过程:用于计算力学的不确定性感知分辨率独立算子学习算法","authors":"Sawan Kumar, Rajdip Nayek, Souvik Chakraborty","doi":"arxiv-2409.10972","DOIUrl":null,"url":null,"abstract":"The growing demand for accurate, efficient, and scalable solutions in\ncomputational mechanics highlights the need for advanced operator learning\nalgorithms that can efficiently handle large datasets while providing reliable\nuncertainty quantification. This paper introduces a novel Gaussian Process (GP)\nbased neural operator for solving parametric differential equations. The\napproach proposed leverages the expressive capability of deterministic neural\noperators and the uncertainty awareness of conventional GP. In particular, we\npropose a ``neural operator-embedded kernel'' wherein the GP kernel is\nformulated in the latent space learned using a neural operator. Further, we\nexploit a stochastic dual descent (SDD) algorithm for simultaneously training\nthe neural operator parameters and the GP hyperparameters. Our approach\naddresses the (a) resolution dependence and (b) cubic complexity of traditional\nGP models, allowing for input-resolution independence and scalability in\nhigh-dimensional and non-linear parametric systems, such as those encountered\nin computational mechanics. We apply our method to a range of non-linear\nparametric partial differential equations (PDEs) and demonstrate its\nsuperiority in both computational efficiency and accuracy compared to standard\nGP models and wavelet neural operators. Our experimental results highlight the\nefficacy of this framework in solving complex PDEs while maintaining robustness\nin uncertainty estimation, positioning it as a scalable and reliable\noperator-learning algorithm for computational mechanics.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics\",\"authors\":\"Sawan Kumar, Rajdip Nayek, Souvik Chakraborty\",\"doi\":\"arxiv-2409.10972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for accurate, efficient, and scalable solutions in\\ncomputational mechanics highlights the need for advanced operator learning\\nalgorithms that can efficiently handle large datasets while providing reliable\\nuncertainty quantification. This paper introduces a novel Gaussian Process (GP)\\nbased neural operator for solving parametric differential equations. The\\napproach proposed leverages the expressive capability of deterministic neural\\noperators and the uncertainty awareness of conventional GP. In particular, we\\npropose a ``neural operator-embedded kernel'' wherein the GP kernel is\\nformulated in the latent space learned using a neural operator. Further, we\\nexploit a stochastic dual descent (SDD) algorithm for simultaneously training\\nthe neural operator parameters and the GP hyperparameters. Our approach\\naddresses the (a) resolution dependence and (b) cubic complexity of traditional\\nGP models, allowing for input-resolution independence and scalability in\\nhigh-dimensional and non-linear parametric systems, such as those encountered\\nin computational mechanics. We apply our method to a range of non-linear\\nparametric partial differential equations (PDEs) and demonstrate its\\nsuperiority in both computational efficiency and accuracy compared to standard\\nGP models and wavelet neural operators. Our experimental results highlight the\\nefficacy of this framework in solving complex PDEs while maintaining robustness\\nin uncertainty estimation, positioning it as a scalable and reliable\\noperator-learning algorithm for computational mechanics.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对精确、高效、可扩展的计算力学解决方案的需求日益增长,这凸显了对先进算子学习算法的需求,这种算法既能高效处理大型数据集,又能提供可靠的不确定性量化。本文介绍了一种基于高斯过程(GP)的新型神经算子,用于求解参数微分方程。本文提出的方法充分利用了确定性神经算子的表达能力和传统 GP 的不确定性意识。特别是,我们提出了一种 "神经算子嵌入内核",其中 GP 内核是在使用神经算子学习的潜空间中形成的。此外,我们还利用随机双降(SDD)算法同时训练神经算子参数和 GP 超参数。我们的方法解决了传统 GP 模型的(a)分辨率依赖性和(b)立方复杂性问题,从而实现了输入分辨率的独立性和高维非线性参数系统的可扩展性,例如在计算力学中遇到的系统。我们将我们的方法应用于一系列非线性参数偏微分方程(PDEs),并证明与标准 GP 模型和小波神经算子相比,我们的方法在计算效率和准确性方面都更胜一筹。我们的实验结果凸显了这一框架在求解复杂偏微分方程时的有效性,同时保持了不确定性估计的鲁棒性,使其成为计算力学领域一种可扩展且可靠的算子学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics
The growing demand for accurate, efficient, and scalable solutions in computational mechanics highlights the need for advanced operator learning algorithms that can efficiently handle large datasets while providing reliable uncertainty quantification. This paper introduces a novel Gaussian Process (GP) based neural operator for solving parametric differential equations. The approach proposed leverages the expressive capability of deterministic neural operators and the uncertainty awareness of conventional GP. In particular, we propose a ``neural operator-embedded kernel'' wherein the GP kernel is formulated in the latent space learned using a neural operator. Further, we exploit a stochastic dual descent (SDD) algorithm for simultaneously training the neural operator parameters and the GP hyperparameters. Our approach addresses the (a) resolution dependence and (b) cubic complexity of traditional GP models, allowing for input-resolution independence and scalability in high-dimensional and non-linear parametric systems, such as those encountered in computational mechanics. We apply our method to a range of non-linear parametric partial differential equations (PDEs) and demonstrate its superiority in both computational efficiency and accuracy compared to standard GP models and wavelet neural operators. Our experimental results highlight the efficacy of this framework in solving complex PDEs while maintaining robustness in uncertainty estimation, positioning it as a scalable and reliable operator-learning algorithm for computational mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信