卡坦动帧和数据流形

Eliot Tron, Rita Fioresi, Nicolas Couellan, Stéphane Puechmorel
{"title":"卡坦动帧和数据流形","authors":"Eliot Tron, Rita Fioresi, Nicolas Couellan, Stéphane Puechmorel","doi":"arxiv-2409.12057","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to employ the language of Cartan moving frames\nto study the geometry of the data manifolds and its Riemannian structure, via\nthe data information metric and its curvature at data points. Using this\nframework and through experiments, explanations on the response of a neural\nnetwork are given by pointing out the output classes that are easily reachable\nfrom a given input. This emphasizes how the proposed mathematical relationship\nbetween the output of the network and the geometry of its inputs can be\nexploited as an explainable artificial intelligence tool.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartan moving frames and the data manifolds\",\"authors\":\"Eliot Tron, Rita Fioresi, Nicolas Couellan, Stéphane Puechmorel\",\"doi\":\"arxiv-2409.12057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to employ the language of Cartan moving frames\\nto study the geometry of the data manifolds and its Riemannian structure, via\\nthe data information metric and its curvature at data points. Using this\\nframework and through experiments, explanations on the response of a neural\\nnetwork are given by pointing out the output classes that are easily reachable\\nfrom a given input. This emphasizes how the proposed mathematical relationship\\nbetween the output of the network and the geometry of its inputs can be\\nexploited as an explainable artificial intelligence tool.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在运用卡坦运动帧语言研究数据流形的几何及其黎曼结构、数据信息度量及其在数据点上的曲率。利用这一框架并通过实验,通过指出给定输入容易达到的输出类别来解释神经网络的响应。这就强调了所提出的网络输出与其输入几何之间的数学关系如何能够作为一种可解释的人工智能工具加以利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cartan moving frames and the data manifolds
The purpose of this paper is to employ the language of Cartan moving frames to study the geometry of the data manifolds and its Riemannian structure, via the data information metric and its curvature at data points. Using this framework and through experiments, explanations on the response of a neural network are given by pointing out the output classes that are easily reachable from a given input. This emphasizes how the proposed mathematical relationship between the output of the network and the geometry of its inputs can be exploited as an explainable artificial intelligence tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信