拟合多层次因子模型

Tetiana Parshakova, Trevor Hastie, Stephen Boyd
{"title":"拟合多层次因子模型","authors":"Tetiana Parshakova, Trevor Hastie, Stephen Boyd","doi":"arxiv-2409.12067","DOIUrl":null,"url":null,"abstract":"We examine a special case of the multilevel factor model, with covariance\ngiven by multilevel low rank (MLR) matrix~\\cite{parshakova2023factor}. We\ndevelop a novel, fast implementation of the expectation-maximization (EM)\nalgorithm, tailored for multilevel factor models, to maximize the likelihood of\nthe observed data. This method accommodates any hierarchical structure and\nmaintains linear time and storage complexities per iteration. This is achieved\nthrough a new efficient technique for computing the inverse of the positive\ndefinite MLR matrix. We show that the inverse of an invertible PSD MLR matrix\nis also an MLR matrix with the same sparsity in factors, and we use the\nrecursive Sherman-Morrison-Woodbury matrix identity to obtain the factors of\nthe inverse. Additionally, we present an algorithm that computes the Cholesky\nfactorization of an expanded matrix with linear time and space complexities,\nyielding the covariance matrix as its Schur complement. This paper is\naccompanied by an open-source package that implements the proposed methods.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitting Multilevel Factor Models\",\"authors\":\"Tetiana Parshakova, Trevor Hastie, Stephen Boyd\",\"doi\":\"arxiv-2409.12067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine a special case of the multilevel factor model, with covariance\\ngiven by multilevel low rank (MLR) matrix~\\\\cite{parshakova2023factor}. We\\ndevelop a novel, fast implementation of the expectation-maximization (EM)\\nalgorithm, tailored for multilevel factor models, to maximize the likelihood of\\nthe observed data. This method accommodates any hierarchical structure and\\nmaintains linear time and storage complexities per iteration. This is achieved\\nthrough a new efficient technique for computing the inverse of the positive\\ndefinite MLR matrix. We show that the inverse of an invertible PSD MLR matrix\\nis also an MLR matrix with the same sparsity in factors, and we use the\\nrecursive Sherman-Morrison-Woodbury matrix identity to obtain the factors of\\nthe inverse. Additionally, we present an algorithm that computes the Cholesky\\nfactorization of an expanded matrix with linear time and space complexities,\\nyielding the covariance matrix as its Schur complement. This paper is\\naccompanied by an open-source package that implements the proposed methods.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了多层次因子模型的一个特例,其协方差由多层次低阶(MLR)矩阵给出~\cite{parshakova2023factor}。我们为多层次因子模型开发了一种新颖、快速的期望最大化(EM)算法,以最大化观测数据的可能性。该方法可适应任何层次结构,并保持每次迭代的线性时间和存储复杂性。这是通过一种计算正定有限 MLR 矩阵逆的高效新技术实现的。我们证明,可逆 PSD MLR 矩阵的逆矩阵也是具有相同稀疏因子的 MLR 矩阵,我们使用游标式 Sherman-Morrison-Woodbury 矩阵标识来获得逆矩阵的因子。此外,我们还提出了一种算法,能以线性的时间和空间复杂度计算扩展矩阵的 Cholesky 因子化,得到协方差矩阵的舒尔补码。本文附有一个开源软件包,用于实现所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitting Multilevel Factor Models
We examine a special case of the multilevel factor model, with covariance given by multilevel low rank (MLR) matrix~\cite{parshakova2023factor}. We develop a novel, fast implementation of the expectation-maximization (EM) algorithm, tailored for multilevel factor models, to maximize the likelihood of the observed data. This method accommodates any hierarchical structure and maintains linear time and storage complexities per iteration. This is achieved through a new efficient technique for computing the inverse of the positive definite MLR matrix. We show that the inverse of an invertible PSD MLR matrix is also an MLR matrix with the same sparsity in factors, and we use the recursive Sherman-Morrison-Woodbury matrix identity to obtain the factors of the inverse. Additionally, we present an algorithm that computes the Cholesky factorization of an expanded matrix with linear time and space complexities, yielding the covariance matrix as its Schur complement. This paper is accompanied by an open-source package that implements the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信