双索引微积分算法:更快解决有限素数域中的离散对数问题

Wen Huang, Zhishuo Zhang, Weixin Zhao, Jian Peng, Yongjian Liao, Yuyu Wang
{"title":"双索引微积分算法:更快解决有限素数域中的离散对数问题","authors":"Wen Huang, Zhishuo Zhang, Weixin Zhao, Jian Peng, Yongjian Liao, Yuyu Wang","doi":"arxiv-2409.08784","DOIUrl":null,"url":null,"abstract":"Solving the discrete logarithm problem in a finite prime field is an\nextremely important computing problem in modern cryptography. The hardness of\nsolving the discrete logarithm problem in a finite prime field is the security\nfoundation of numerous cryptography schemes. In this paper, we propose the\ndouble index calculus algorithm to solve the discrete logarithm problem in a\nfinite prime field. Our algorithm is faster than the index calculus algorithm,\nwhich is the state-of-the-art algorithm for solving the discrete logarithm\nproblem in a finite prime field. Empirical experiment results indicate that our\nalgorithm could be more than a 30-fold increase in computing speed than the\nindex calculus algorithm when the bit length of the order of prime field is 70\nbits. In addition, our algorithm is more general than the index calculus\nalgorithm. Specifically, when the base of the target discrete logarithm problem\nis not the multiplication generator, the index calculus algorithm may fail to\nsolve the discrete logarithm problem while our algorithm still can work.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double Index Calculus Algorithm: Faster Solving Discrete Logarithm Problem in Finite Prime Field\",\"authors\":\"Wen Huang, Zhishuo Zhang, Weixin Zhao, Jian Peng, Yongjian Liao, Yuyu Wang\",\"doi\":\"arxiv-2409.08784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving the discrete logarithm problem in a finite prime field is an\\nextremely important computing problem in modern cryptography. The hardness of\\nsolving the discrete logarithm problem in a finite prime field is the security\\nfoundation of numerous cryptography schemes. In this paper, we propose the\\ndouble index calculus algorithm to solve the discrete logarithm problem in a\\nfinite prime field. Our algorithm is faster than the index calculus algorithm,\\nwhich is the state-of-the-art algorithm for solving the discrete logarithm\\nproblem in a finite prime field. Empirical experiment results indicate that our\\nalgorithm could be more than a 30-fold increase in computing speed than the\\nindex calculus algorithm when the bit length of the order of prime field is 70\\nbits. In addition, our algorithm is more general than the index calculus\\nalgorithm. Specifically, when the base of the target discrete logarithm problem\\nis not the multiplication generator, the index calculus algorithm may fail to\\nsolve the discrete logarithm problem while our algorithm still can work.\",\"PeriodicalId\":501332,\"journal\":{\"name\":\"arXiv - CS - Cryptography and Security\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Cryptography and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决有限素域中的离散对数问题是现代密码学中一个极其重要的计算问题。求解有限素域离散对数问题的难度是众多密码方案的安全基础。在本文中,我们提出了双索引微积分算法来解决无限素域中的离散对数问题。我们的算法比索引微积分算法更快,而索引微积分算法是解决有限素域离散对数问题的最先进算法。实证实验结果表明,当质数域阶的比特长度为 70 比特时,我们的算法比索引微积分算法的运算速度提高了 30 多倍。此外,我们的算法比索引计算算法更具通用性。具体来说,当目标离散对数问题的基数不是乘法发生器时,索引微积分算法可能无法解决离散对数问题,而我们的算法仍然可以工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double Index Calculus Algorithm: Faster Solving Discrete Logarithm Problem in Finite Prime Field
Solving the discrete logarithm problem in a finite prime field is an extremely important computing problem in modern cryptography. The hardness of solving the discrete logarithm problem in a finite prime field is the security foundation of numerous cryptography schemes. In this paper, we propose the double index calculus algorithm to solve the discrete logarithm problem in a finite prime field. Our algorithm is faster than the index calculus algorithm, which is the state-of-the-art algorithm for solving the discrete logarithm problem in a finite prime field. Empirical experiment results indicate that our algorithm could be more than a 30-fold increase in computing speed than the index calculus algorithm when the bit length of the order of prime field is 70 bits. In addition, our algorithm is more general than the index calculus algorithm. Specifically, when the base of the target discrete logarithm problem is not the multiplication generator, the index calculus algorithm may fail to solve the discrete logarithm problem while our algorithm still can work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信