立法推特网络中的领导力和参与动态:统计分析与建模

Carolina Luque, Juan Sosa
{"title":"立法推特网络中的领导力和参与动态:统计分析与建模","authors":"Carolina Luque, Juan Sosa","doi":"arxiv-2409.10475","DOIUrl":null,"url":null,"abstract":"In this manuscript, we analyze the interaction network on Twitter among\nmembers of the 117th U.S. Congress to assess the visibility of political\nleaders and explore how systemic properties and node attributes influence the\nformation of legislative connections. We employ descriptive social network\nstatistical methods, the exponential random graph model (ERGM), and the\nstochastic block model (SBM) to evaluate the relative impact of network\nsystemic properties, as well as institutional and personal traits, on the\ngeneration of online relationships among legislators. Our findings reveal that\nlegislative networks on social media platforms like Twitter tend to reinforce\nthe leadership of dominant political actors rather than diminishing their\ninfluence. However, we identify that these leadership roles can manifest in\nvarious forms. Additionally, we highlight that online connections within\nlegislative networks are influenced by both the systemic properties of the\nnetwork and institutional characteristics.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leadership and Engagement Dynamics in Legislative Twitter Networks: Statistical Analysis and Modeling\",\"authors\":\"Carolina Luque, Juan Sosa\",\"doi\":\"arxiv-2409.10475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we analyze the interaction network on Twitter among\\nmembers of the 117th U.S. Congress to assess the visibility of political\\nleaders and explore how systemic properties and node attributes influence the\\nformation of legislative connections. We employ descriptive social network\\nstatistical methods, the exponential random graph model (ERGM), and the\\nstochastic block model (SBM) to evaluate the relative impact of network\\nsystemic properties, as well as institutional and personal traits, on the\\ngeneration of online relationships among legislators. Our findings reveal that\\nlegislative networks on social media platforms like Twitter tend to reinforce\\nthe leadership of dominant political actors rather than diminishing their\\ninfluence. However, we identify that these leadership roles can manifest in\\nvarious forms. Additionally, we highlight that online connections within\\nlegislative networks are influenced by both the systemic properties of the\\nnetwork and institutional characteristics.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本手稿中,我们分析了第 117 届美国国会议员在 Twitter 上的互动网络,以评估政治领袖的能见度,并探讨系统属性和节点属性如何影响立法联系的形成。我们采用了描述性社会网络统计方法、指数随机图模型(ERGM)和随机块模型(SBM)来评估网络系统属性以及机构和个人特征对议员之间在线关系形成的相对影响。我们的研究结果表明,Twitter 等社交媒体平台上的立法网络倾向于加强占主导地位的政治行为者的领导力,而不是削弱他们的影响力。然而,我们发现这些领导角色可以表现为多种形式。此外,我们还强调,立法网络中的在线联系既受网络系统属性的影响,也受制度特征的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leadership and Engagement Dynamics in Legislative Twitter Networks: Statistical Analysis and Modeling
In this manuscript, we analyze the interaction network on Twitter among members of the 117th U.S. Congress to assess the visibility of political leaders and explore how systemic properties and node attributes influence the formation of legislative connections. We employ descriptive social network statistical methods, the exponential random graph model (ERGM), and the stochastic block model (SBM) to evaluate the relative impact of network systemic properties, as well as institutional and personal traits, on the generation of online relationships among legislators. Our findings reveal that legislative networks on social media platforms like Twitter tend to reinforce the leadership of dominant political actors rather than diminishing their influence. However, we identify that these leadership roles can manifest in various forms. Additionally, we highlight that online connections within legislative networks are influenced by both the systemic properties of the network and institutional characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信