线性互补问题的基于简化模数的两步矩阵分割迭代法

Symmetry Pub Date : 2024-09-14 DOI:10.3390/sym16091210
Ximing Fang
{"title":"线性互补问题的基于简化模数的两步矩阵分割迭代法","authors":"Ximing Fang","doi":"10.3390/sym16091210","DOIUrl":null,"url":null,"abstract":"A two-step simplified modulus-based matrix splitting iteration method is presented for solving the linear complementarity problem. According to general matrix splitting and special matrix splitting, a general convergence analysis and a specific convergence analysis are described, respectively. Numerical experiments show that the iteration method is effective and that the convergence theories are valid.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Step Simplified Modulus-Based Matrix Splitting Iteration Method for Linear Complementarity Problems\",\"authors\":\"Ximing Fang\",\"doi\":\"10.3390/sym16091210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-step simplified modulus-based matrix splitting iteration method is presented for solving the linear complementarity problem. According to general matrix splitting and special matrix splitting, a general convergence analysis and a specific convergence analysis are described, respectively. Numerical experiments show that the iteration method is effective and that the convergence theories are valid.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于简化模数的两步矩阵分割迭代法,用于求解线性互补问题。根据一般矩阵分割和特殊矩阵分割,分别描述了一般收敛分析和特殊收敛分析。数值实验表明,迭代法是有效的,收敛理论是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Step Simplified Modulus-Based Matrix Splitting Iteration Method for Linear Complementarity Problems
A two-step simplified modulus-based matrix splitting iteration method is presented for solving the linear complementarity problem. According to general matrix splitting and special matrix splitting, a general convergence analysis and a specific convergence analysis are described, respectively. Numerical experiments show that the iteration method is effective and that the convergence theories are valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信