部分虚过渡态(ITS)图:研究和分析不平衡化学反应原子到原子映射及其补全的形式框架

Symmetry Pub Date : 2024-09-16 DOI:10.3390/sym16091217
Marcos E. González Laffitte, Klaus Weinbauer, Tieu-Long Phan, Nora Beier, Nico Domschke, Christoph Flamm, Thomas Gatter, Daniel Merkle, Peter F. Stadler
{"title":"部分虚过渡态(ITS)图:研究和分析不平衡化学反应原子到原子映射及其补全的形式框架","authors":"Marcos E. González Laffitte, Klaus Weinbauer, Tieu-Long Phan, Nora Beier, Nico Domschke, Christoph Flamm, Thomas Gatter, Daniel Merkle, Peter F. Stadler","doi":"10.3390/sym16091217","DOIUrl":null,"url":null,"abstract":"Atom-to-atom maps (AAMs) are bijections that establish the correspondence of reactant and product atoms across chemical reactions. They capture crucial features of the reaction mechanism and thus play a central role in modeling chemistry at the level of graph transformations. AAMs are equivalent to so-called “imaginary transition state” (ITS) graphs, making it possible to reduce tasks such as the computational comparison of AAMs to testing graph isomorphisms. In many application scenarios, nonetheless, only partial information is available, i.e., only partial maps or, equivalently, only subgraphs of the ITS graphs, are known. Here, we investigate whether and how, and to what extent, such partial chemical data can be completed and compared. The focus of this contribution is entirely on the development of a solid mathematical foundation for the analysis of partial AAMs and their associated partial ITS graphs.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"593 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Imaginary Transition State (ITS) Graphs: A Formal Framework for Research and Analysis of Atom-to-Atom Maps of Unbalanced Chemical Reactions and Their Completions\",\"authors\":\"Marcos E. González Laffitte, Klaus Weinbauer, Tieu-Long Phan, Nora Beier, Nico Domschke, Christoph Flamm, Thomas Gatter, Daniel Merkle, Peter F. Stadler\",\"doi\":\"10.3390/sym16091217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atom-to-atom maps (AAMs) are bijections that establish the correspondence of reactant and product atoms across chemical reactions. They capture crucial features of the reaction mechanism and thus play a central role in modeling chemistry at the level of graph transformations. AAMs are equivalent to so-called “imaginary transition state” (ITS) graphs, making it possible to reduce tasks such as the computational comparison of AAMs to testing graph isomorphisms. In many application scenarios, nonetheless, only partial information is available, i.e., only partial maps or, equivalently, only subgraphs of the ITS graphs, are known. Here, we investigate whether and how, and to what extent, such partial chemical data can be completed and compared. The focus of this contribution is entirely on the development of a solid mathematical foundation for the analysis of partial AAMs and their associated partial ITS graphs.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":\"593 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原子到原子图谱(AAM)是建立化学反应中反应物和生成物原子对应关系的双射。它们捕捉了反应机理的关键特征,因此在图变换层面的化学建模中发挥着核心作用。AAM 等同于所谓的 "假想过渡态"(ITS)图,因此可以将 AAM 的计算比较等任务简化为测试图的同构性。然而,在许多应用场景中,只有部分信息可用,即只知道部分映射,或者等同于只知道 ITS 图的子图。在此,我们将研究是否可以、如何以及在多大程度上完成并比较这些部分化学数据。本文的重点完全在于为分析部分 AAM 及其相关的部分 ITS 图奠定坚实的数学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Imaginary Transition State (ITS) Graphs: A Formal Framework for Research and Analysis of Atom-to-Atom Maps of Unbalanced Chemical Reactions and Their Completions
Atom-to-atom maps (AAMs) are bijections that establish the correspondence of reactant and product atoms across chemical reactions. They capture crucial features of the reaction mechanism and thus play a central role in modeling chemistry at the level of graph transformations. AAMs are equivalent to so-called “imaginary transition state” (ITS) graphs, making it possible to reduce tasks such as the computational comparison of AAMs to testing graph isomorphisms. In many application scenarios, nonetheless, only partial information is available, i.e., only partial maps or, equivalently, only subgraphs of the ITS graphs, are known. Here, we investigate whether and how, and to what extent, such partial chemical data can be completed and compared. The focus of this contribution is entirely on the development of a solid mathematical foundation for the analysis of partial AAMs and their associated partial ITS graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信